
www.manaraa.com

Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

5-1-2008 

Development of a heterogeneously catalyzed chemical process to Development of a heterogeneously catalyzed chemical process to 

produce biodiesel produce biodiesel 

Alok Kumar Singh 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Singh, Alok Kumar, "Development of a heterogeneously catalyzed chemical process to produce biodiesel" 
(2008). Theses and Dissertations. 1409. 
https://scholarsjunction.msstate.edu/td/1409 

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1409?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


www.manaraa.com

 

DEVELOPMENT OF A HETEROGENEOUSLY CATALYZED CHEMICAL 

PROCESS TO PRODUCE BIODIESEL 

 

 

By 

Alok Kumar Singh 

 

 

A Dissertation 
Submitted to the Faculty of 
Mississippi State University 

in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

in Biological Engineering 
in the Department of Agricultural and Biological Engineering 

 

 
Mississippi State, Mississippi 

May 2008



www.manaraa.com

 

 

DEVELOPMENT OF A HETEROGENEOUSLY CATALYZED CHEMICAL 

PROCESS TO PRODUCE BIODIESEL 

 

 

By 

Alok Kumar Singh 

 

Approved: 

 
 
Sandun D. Fernando    
Assistant Professor of Agricultural & 
Biological Engineering 
(Director of Dissertation and Graduate 
Coordinator) 
 
 
 
Lester Pordesimo                               
Assistant Professor of Agricultural & 
Biological Engineering 
(Committee Member) 
 

S. D. Filip To  
Associate Professor of Agricultural & 
Biological Engineering 
(Committee Member) 
 
 
 
 
Rafael Hernandez 
Assistant Professor of Chemical 
Engineering  
(Committee Member) 

 
 
 
Juan L. Silva 
Professor of Food Science, Nutrition and 
Health Promotion                                             
(Committee Member) 

 
 
 
W. Glenn Steele 
Interim Dean of the Bagley College of 
Engineering



www.manaraa.com

 

Name: Alok Kumar Singh 

Date of Degree: May 2, 2008 

Institution: Mississippi State University 

Major Field: Biological Engineering  

Major Professor: Dr. Sandun D. Fernando 

Title of Study: DEVELOPMENT OF A HETEROGENEOUSLY CATALYZED   
CHEMICAL PROCESS TO PRODUCE BIODIESEL 

 
Pages in Study: 103 
 
Candidate for Degree of Doctor of Philosophy  

 

Biodiesel is a renewable, biodegradable, and nontoxic fuel. At present, when 

homogeneous catalysts are used, biodiesel is primarily produced in batch reactors in 

which the required energy is provided by heating accompanied by mechanical mixing. 

Alternatively, ultrasonic processing could be an effective way to attain required mixing 

while providing the necessary activation energy. We found that, using ultrasonication, a 

biodiesel yield in excess of 99% can be achieved in a short time duration of five minutes 

or less in comparison to one hour or more using conventional batch reactor systems. 

Homogeneous acid or base catalysts dissolve fully in the glycerol layer and partially in 

the fatty acid methyl esters (biodiesel) layer during the triglyceride transesterification 

process. Heterogeneous (solid) catalysts, on the other hand, can prevent catalyst 

contamination making product separation much easier. In the present work, one of the 

objectives was to determine the transesterification kinetics of different pure metal oxide 

catalysts, mixed metal oxide catalysts, layered double hydroxides with their 

corresponding yield is presented. It was found that heterogeneous catalysts require much 
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higher temperatures (215oC) and pressures to achieve acceptable conversion levels 

compared to homogeneous catalysts. For some of the mixed metal oxide solid catalysts a 

conversion level of 99% was observed. The present study also deals with the catalyst 

characterization on the basis of their acidity/ basicity and site strength, and surface area. 

Finally the deoxygenation of fatty acid methyl esters was carried out in order to upgrade 

the biodiesel. As a result, several aliphatic and aromatic hydrocarbons were detected in 

the mass spectrometric studies.   

This dissertation consists of five chapters. Chapter I present a brief introduction, 

Chapter II contains a review of literature, Chapter III contains the materials and methods 

used in this study, Chapter IV presents the results and its discussions, Chapter V 

discusses the summary and conclusions and finally Chapter VI suggests some 

recommendations from the study.  

 

Key words: heterogeneous catalysis, biodiesel, reaction kinetics, deoxygenation, 

thermodynamic analysis. 
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CHAPTER I 

INTRODUCTION 
 
 

 The status of present consumption of crude oil is about 79 millions barrels per 

day. The tremendous increasing need of oil, which is predicted to be about 119 millions 

barrels per day by 2020’s and the shortage of oil thereafter (after 10-15 years), predicted 

based on the total reserves in hand, urgently urges to focus the research in finding 

alternative means to fulfill world’s energy needs. The development of energy efficient 

biofuel production technologies in aiming at reducing the reagent costs and increasing the 

production efficiency is becoming important in a world that is increasingly becoming 

“green”. In this prospect, extraction of fuel energy in the form of fatty acid methyl or 

ethyl esters, commonly known as biodiesel, from vegetable oils and animal fats is 

becoming more popular due to its renewable nature, ability to replace dwindling 

petroleum based production technologies, for being environmental friendly, and 

overwhelming opportunities to overcome an imminent forthcoming energy crisis. 

Biodiesel is generally defined as the monoalkyl esters made from triglycerides, di-

glycerides and mono-glycerides. The triglycerides could originate from vegetable oils or 

animal fats. This renewable fuel is as effective as petroleum diesel in powering 

unmodified or slightly modified diesel engines. It is biodegradable and nontoxic, has low 

undesirable tailpipe emission profiles, and, therefore, is environmentally benign.  
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There are different methods of biodiesel production and application such as direct use 

and blending, microemulsions, thermal cracking (Pyrolysis) of vegetable oil and 

transesterification (Ma 1999). Among these, the most common method of biodiesel 

production is transesterification (alcoholysis) of oil (triglycerides) with methanol in the 

presence of a catalyst which gives biodiesel (fatty acid methyl esters) and glycerol 

(byproduct). The selection of catalyst depends on the amount of FFA present in the oil. 

Generally, the catalysts are alkali, acid, or enzyme. For triglyceride stock having lower 

amount of FFAs, alkali catalyzed reaction gives a better conversion in a relatively short 

time while for higher FFAs containing stock, acid catalyzed esterification followed by 

transesterification is suitable (Schuchardt 1998).  The stoichiometric reaction requires 1 

mole of triglyceride and 3 moles of alcohol. However, excess alcohol is used to drive the 

reversible reaction forward to increase the yields of the alkyl esters and to assist phase 

separation from the glycerol formed. Several aspects, including the type of catalyst 

(alkaline or acid), alcohol/vegetable oil molar ratio, temperature, purity of the reactants 

(mainly water content), and free fatty acid content, have an influence on the 

transesterification rates (Schuchardt 1998). Figure 1.1 shows the reaction of soybean oil 

(triglyceride) with alcohol in the presence of a catalyst producing biodiesel (mixture of 

alkyl esters) and glycerol (Schuchardt 1998). Alkali-catalyzed transesterification is much 

faster than acid-catalyzed transesterification and is the most commonly used method 

commercially (Ma 1999). Putting that together with the fact that the alkaline catalysts are 

less corrosive than acidic compounds, industrial processes usually favor base catalysts 

such as alkaline metal alkoxides and hydroxides as well as sodium or potassium 
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carbonates.

 

Figure 1.1   Transesterification of triglyceride to mixture of alkyl esters (Biodiesel)  

 

1.1 Composition of Oils 

 Fats and oils are primarily water-insoluble hydrophobic substances of plant and 

animal origin and are made up of one mole of glycerol and three moles of fatty acids and 

are commonly referred to as triglycerides. Fatty acids vary in carbon chain length and in 

the number of unsaturated bonds (double bonds). The fatty acids found in vegetable oils 

are summarized in Table 1.1. Table 1.2 shows typical fatty acid compositions of common 

oil sources. Natural vegetable oils and animal fats are solvent extracted or mechanically 

pressed to obtain crude oil or fat. These usually contain free fatty acids, phospholipids, 

sterols, water, odorants and other impurities. Even refined oils and fats contain small 

amounts of free fatty acids and water. The free fatty acid and water contents have 

significant effects on the transesterification of glycerides with alcohols using alkaline or 

acid catalysts. They also interfere with the separation of fatty acid alkyl esters and 

glycerol because of salt formation in the product.  
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Table 1.1   Chemical properties of vegetable oil on the basis of their fatty acid 
composition, % by weight (Ma, 1999) 

 
Vegetable Oil 16:0 18:0 20:0 22:0 24:0 18:1 22:1 18:2 18:3 

Corn 11.67 1.85 0.24 0.00 0.00 25.16 0.00 60.60 0.48 

Cottonseed 28.33 0.89 0.00 0.00 0.00 13.27 0.00 57.51 0.00 

Cramble 2.07 0.70 2.09 0.80 1.12 18.86 58.51 9.00 6.85 

Peanut 11.38 2.39 1.32 2.52 1.23 48.28 0.00 31.95 0.93 

Rapeseed 3.49 0.85 0.00 0.00 0.00 64.40 0.00 22.30 $8.23 

Soybean 11.75 3.15 0.00 0.00 0.00 23.26 0.00 55.53 6.31 

Sunflower 6.08 3.26 0.00 0.00 0.00 16.93 0.00 73.73 0.00 

 

 

Table 1.2   Typical fatty acid composition-common oil source (Ma, 1999) 
 

Fatty 

acid 

Soybean Cottonseed Palm Lard Tallow Coconut 

Lauric 0.1 0.1 0.1 0.1 0.1 46.5 

Myristic 0.1 0.7 1.0 1.4 .8 19.2 

Palmitic 0.2 20.1 42.8 23.6 23.3 9.8 

Stearic 3.7 2.6 4.5 14.2 19.4 3.0 

Oleic 22.8 19.2 40.5 44.2 42.4 6.9 

Linoleic 53.7 55.2 10.1 10.7 2.9 2.2 

Linolenic 8.6 0.6 0.2 0.4 0.9 0.0 
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1.2 Composition of Biodiesel 

 Biodiesel is mixture of fatty acid alkyl esters. If methanol is used as a reactant, it 

will be a mixture of fatty acid methyl esters (FAME). Based on the feed stock, biodiesel 

has different proportions of fatty acid methyl esters. Table 1.3 shows the chemical 

composition of common fatty acids and their methyl esters present in the biodiesel. 

 

Table 1.3   Chemical structures of common fatty acid and their methyl esters. 
 

Fatty acid / 
Formula/ 

Molecular weight 

Common 
acronym 

Methyl ester/ 
Formula/ 

Molecular weight 
Palmitic acid/ 

C16H32O2/ 
256.428 

 
C16:0 

Methyl Palmitate/ 
C17H34O2/ 
270.457 

Stearic acid/ 
C18H36O2/ 
284.481 

 
C18:0 

Methyl Stearate/ 
C19H38O2/ 
298.511 

Oleic acid/ 
C18H34O2/ 
282.465 

 
C18:1 

Methyl Oleate/ 
C19H36O2/ 
296.495 

Linoleic acid/ 
C18H32O2/ 
280.450 

 
C18:2 

Methyl Linoleate/ 
C19H34O2/ 
294.479 

Linolenic acid/ 
C18H30O2/ 
278.434 

 
C18:3 

Methyl Linolenate/ 
C19H24O2/ 
292.463 

 

 

1.3 Mechanism of Transesterification 

 As mentioned earlier, the selection of a catalyst depends on the amount of free 

fatty acids (FFA) content of the triglyceride feedstock. For our analysis we used soybean 

oil for all the transesterification experiments which had a FFA content of less than 1 %. 

Therefore, we used base as the catalyst in all of our preliminary (and control) 

transesterification reactions. Equation 1.1 to 1.4 shows the mechanism of base catalyzed 

transesterification. 
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The overall process is a sequence of three consecutive and reversible reactions in which 

di- and monoglycerides are formed as intermediates. The first step (Eq. 1.1) is the 

reaction of the base with the alcohol producing an alkoxide and a protonated catalyst. The 

nucleophilic attack of the alkoxide at the carbonyl group of the triglyceride generates a 

tetrahedral intermediate (Eq. 1.2) from which the alkyl ester and the corresponding anion 

of the diglyceride are formed (Eq. 1.3). The latter deprotonates the catalyst regenerating 

the active species (Eq. 1.4) which is now able to react with a second molecule of the 

alcohol starting another catalytic cycle. Diglycerides and monoglycerides are converted 

by the same mechanism to a mixture of alkyl esters and glycerol. Transesterification 

reactions are reversible and typically require excess alcohol reactant to help push the 

equilibrium in the direction of the product biodiesel and glycerol. 
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1.4 Justification of the Research 

 Conventionally homogeneous catalysts (like NaOH, KOH etc.) are used for the 

transesterification reaction. Since the transesterification reaction can only occur in the 

interfacial region between the liquids (Benitez, 2004) and also fats and alcohols are not 

totally miscible (Stavarache, 2003, 2005), this is a very slow process. A vigorous mixing 

is required to increase the area of contact between the two immiscible phases, and thus  

produce an emulsion. In the base-catalyzed procedure, some soap is formed and it acts as 

a phase transfer catalyst, thus helping the mixing of the reactants (Stavarache, 2005). 

Ultrasonication provides the mechanical energy for mixing and the required energy for 

initiating the transesterification reaction (Benitez, 2004). Low frequency ultrasonic 

irradiation is a useful tool for emulsification of immiscible liquids. The collapse of the 

cavitation bubbles disrupts the phase boundary and causes emulsification by ultrasonic 

jets that impinge one liquid to another.  

Despite industrial applicability, homogeneous catalysts have their own  

limitations, especially those associated with homogeneously catalyzed processes. The 

catalyst dissolves fully in the glycerin layer and partially in the FAME layer. As a result, 

biodiesel should be cleaned through a slow, tedious and an environmentally unfriendly 

water washing process. Catalyst contaminated glycerin has little value in today’s market 

and is increasingly becoming a disposal issue. Another negative aspect of the 

homogeneously catalyzed process is that the catalysts are not re-usable. Heterogeneous 

catalysts, on the other hand, make product separation easier and make catalysts reusable. 

With the use of solid catalysts, the refining steps in the purification process can be 
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reduced. Also, heterogeneous catalysts have the potential to simplify the production 

process by enabling usage of continuous packed bed reactors. 

In most of the solid catalyzed experiments, the reaction proceeded at a relatively 

slow rate (Gryglewicz, 1999). The presence of heterogeneous catalysts makes the 

reaction mixture a three-phase system, oil-methanol-catalyst (L/L/S - corresponding to a 

hydrophobic liquid phase, hydrophilic liquid phase and a solid catalyst phase), which for 

mass transfer reasons, protracts the reaction. At the same time, heterogeneous catalysis 

requires relatively harsher reaction conditions, i.e., high pressures and high temperatures. 

For example, some experiments have been carried out at temperatures as low as 78 K and 

as high as 1000 K and high pressures, with high pressure and temperature favoring better 

conversion (Li, 2005).  

This research was undertaken keeping the above mentioned problem in mind. 

 

1.5 Objectives of the Study 

 Based on the intricacies associated with the homogeneously catalyzed 

transesterification process, the overall goal of this study is to design and develop a 

heterogeneously catalyzed chemical process to produce biodiesel in an efficient manner. 

 

The specific objectives are as follows:  

1. Evaluate the feasibility of using ultrasonication (ultrasound energy) for fast mixing of 

transesterification reactant to produce the biodiesel. 

2. Identify a functional heterogeneous (solid) catalyst for the transesterification via 

catalyst screening -Metal Oxides, Mixed Oxides and Layered Double Hydroxides (LDH). 
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3. Study the catalytic properties of active heterogeneous catalysts via catalyst surface 

characterization and chemical kinetics determination.  

4. Identify a process to upgrade biodiesel via deoxygenation of fatty acid methyl esters 

(biodiesel). 

  

 



www.manaraa.com

10 

CHAPTER II 

REVIEW OF LITERATURE 
 
 

This chapter contains the literature cited in this study. Section 2.1 presents a brief 

history of the use of vegetable oil as a diesel fuel. Section 2.2 contains the history of 

biodiesel production using ultrasonication, followed by the background of solid catalysis 

in biodiesel production in section 2.3. Section 2.4 depicts background of reaction kinetics 

determination on solid catalysis work. Finally section 2.5 will represent the history of 

upgrading biodiesel.   

2.1 Use of Vegetable Oil as Diesel Fuel 

Vegetable oils have long been promoted as possible substitutes for diesel fuel. 

Gauthier, a French engineer, published a paper in 1928 discussing the use of vegetable 

oils in diesel engines. Interest in vegetable oils continued in various parts of the world 

during the Second World War, but later on, the arrival of peace and the relative 

abundance of inexpensive fossil fuels made research into diesel substitutes unnecessary. 

Castor oil was used in the first diesel engine in Argentina in 1916 (De Vedia, 1944). 

Historical records indicate that Rudolph Diesel, the inventor of the diesel engine, used 

vegetable oil in his engine as early as 1900 (Peterson, 1986). Castor oil was used in the 

first diesel engine in Argentina in 1916 (De Vedia, 1944).  
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However, owing to oil embargoes in the late 1970’s and worldwide interest on 

environmentally friendly energy alternatives, there was a renewed vigor on alternative 

fuels research and as a result considerable work has recently been done on vegetable oils 

as an alternative to diesel fuel. That research included palm oil, soybean oil, sunflower 

oil, coconut oil, rapeseed oil and tung oil (Ma, 1999). Animal fats, although mentioned 

frequently, have not been studied to the same extent as vegetable oils. Some processing 

methods applicable to vegetable oils are not applicable to animal fats because of natural 

physical property differences. Oils from algae, bacteria and fungi also have been 

investigated. (Shay, 1993). Microalgae have been examined as a source of methyl esters 

diesel fuel (Nagel, 1990). Terpenes and latexes also were studied as diesel fuels (Calvin, 

1985). 

 After the energy crisis in the 1980’s, there has been considerable interest in using 

vegetable oils as a fuel. Bartholomew (1981) addressed the concept of using food (with 

oil content) for fuel, indicating that petroleum should be the ``alternative'' fuel rather than 

vegetable oil and alcohol. He also argued that some form of renewable energy other than 

alternatives from food sources should take the place of the nonrenewable resources.  

The most advanced work with sunflower oil occurred in South Africa because of 

the oil embargo. Caterpillar Brazil, in 1980 (Bartholomew, 1981), used pre-combustion 

chamber engines with a mixture of 10% vegetable oil to maintain total power without any 

alterations or adjustments to the engine. They soon found out that it was not practical to 

substitute 100% vegetable oil for diesel fuel. However, a blend of 20% vegetable oil and 

80% diesel fuel was found to be successful. Some short-term experiments used up to a 

50/50 ratio with varying success rates. The first international Conference on Plant and 



www.manaraa.com

12 

Vegetable Oils as fuels was held in Fargo, North Dakota in August 1982. The primary 

concerns discussed were the cost of the fuel, effects of vegetable oil fuels on engine 

performance and durability and fuel preparation, specifications, and effects of additives. 

Oil production, oilseed processing and extraction also were considered in this meeting 

(ASAE, 1982). Some ground work on use of neat triglycerides in compression ignition 

engines was promulgated at this meeting. 

In one such study, a diesel fleet was powered with filtered, used frying oil (Anon, 

1982). Neat (100%) used cooking oil and a blend of 95% used cooking oil and 5% diesel 

fuels were used. Blending or preheating was used as needed to compensate for cooler 

ambient temperatures. It was reported that there were no coking and carbon build-up 

problems. The key was suggested to be filtering and the only problem reported was 

lubricating oil contamination (viscosity increase due to polymerization of 

polyunsaturated vegetable oils). The lubricating oil had to be changed every 6,400 – 

7,200 km. The advantages of vegetable oils as diesel fuel are (1) liquid nature-portability, 

(2) heat content (80% of diesel fuel), (3) readily availability and (4) renewability. The 

disadvantages are (1) higher viscosity, (2) lower volatility and (3) the reactivity of 

unsaturated hydrocarbon chains (Pryde, 1983).  

Problems related to using direct triglycerides appeared to emerge only after the 

engine has been operated for longer periods of time, especially with direct-injection 

engines. The problems include (1) coking and trumpet formation on the injectors to such 

an extent that fuel atomization does not occur properly or is even prevented as a result of 

plugged orifices, (2) carbon deposits, (3) oil ring sticking and (4) thickening and gelling 

of the lubricating oil as a result of contamination by the vegetable oils. Mixtures of 
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degummed soybean oil and No. 2 diesel fuel in the ratios of 1:2 and 1:1 were tested for 

engine performance and crankcase lubricant viscosity in a John Deere 6-cylinder, 6.6 L 

displacement, direct-injection, turbocharged engine for a total of 600 h (Adams et al., 

1983). The lubricating oil thickening and potential gelling existed with the 1:1 blend, but 

it did not occur with the 1:2 blend. The results indicated that 1:2 blend should be suitable 

as a fuel for agricultural equipment during periods of diesel fuel shortages or allocations. 

Schlick et al. (1988) evaluated the performance of a direct injection 2.59 L, 3-

cylinder 2600 series Ford diesel engine operating on mechanically expelled-unrefined 

soybean oil and sunflower oil blended with number 2 diesel fuels on a 25:75 v/v basis. 

The power remained constant throughout 200 h of operation. Excessive carbon deposits 

on all combustion chamber parts precluded the use of these fuel blends, at least for the 

particular test engine under the specified operating conditions. Ziejewski et al. (1984) 

prepared an emulsion of 53% (vol) alkali-refined and winterized sunflower oil, 13.3% 

(vol) 190-proof ethanol and 33.4% (vol) 1-butanol. This nonionic emulsion had a 

viscosity of 6.31 cSt at 40°C, a cetane number of 25 and an ash content of less than 

0.01%. Lower viscosities and better spray patterns (more even) were observed with an 

increase of 1-butanol. In a 200 h laboratory screening endurance test, no significant 

deteriorations in performance were observed, but irregular injector needle sticking, heavy 

carbon deposits, incomplete combustion and an increase of lubricating oil viscosity were 

reported. Schwab et al. (1987) used the ternary phase equilibrium diagram and the plot of 

viscosity versus solvent fraction to determine the emulsified fuel formulations. All 

microemulsions with butanol, hexanol and octanol met the maximum viscosity 

requirement for No. 2 diesel. The 2-octanol was an effective amphiphile in the micellar 
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solubilization of methanol in triolein and soybean oil. Methanol was often used due to its 

economic advantage over ethanol.  

The first pyrolysis of vegetable oil was conducted in an attempt to synthesize 

petroleum from vegetable oil (Chang and Wan, 1947). Since World War I, many 

investigators have studied the pyrolysis of vegetable oils to obtain products suitable for 

fuel. In 1947, a large scale study on thermal cracking of tung oil using calcium soaps was 

reported (Chang and Wan, 1947). Tung oil was first saponified with lime and then 

thermally cracked to yield a crude oil which was refined to produce diesel fuel and small 

amounts of gasoline and kerosene and it was found that 68 kg of the soap from the 

saponification of tung oil produced 50 L of crude oil.  

Grossley et al. (1962) studied the temperature effect on the type of products 

obtained from heated glycerides. Catalysts have been used in many studies, largely 

metallic salts, to obtain paraffins and olefins similar to those present in petroleum 

sources. Soybean oil was thermally decomposed and distilled in air and nitrogen sparged 

with a standard ASTM distillation apparatus (Niehaus et al., 1986; Schwab et al., 1988). 

Schwab et al. (1988) used safflower oil as a high oleic oil control. The total identified 

hydrocarbons obtained from the distillation of soybean and high oleic safflower oils were 

73-77 and 80-88%, respectively.   

Catalytic cracking of vegetable oils to produce biofuel has been studied (Pioch et 

al., 1993). Coconut oil and palm oil stearin were cracked over a standard petroleum 

catalyst SiO2/Al2O3 at 450°C to produce gases, liquids and solids with lower molecular 

weights. The condensed organic phase was fractionated to produce biogasoline and 
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biodiesel fuels. The chemical compositions (heavy hydrocarbons) of the diesel fractions 

were found to be similar to fossil fuels.  

 

2.2 Biodiesel Production using Ultrasonic Energy 

 As of present, impeller mixing is the most widely used process in over 85 

industrial scale biodiesel plants worldwide and an the same time, to enhance mixing one 

can use either ultrasound energy that can also produce high shear in the liquid medium. 

Applications of sonochemistry (which deals with the ultrasound energy) have been 

developed in virtually all areas of chemistry and related chemical technologies (Ertl, 

2000). Ultrasound is the process of propagation of the compression (rarefaction) waves 

with frequencies above the range of human hearing (Benitez, 1999). It consists of the 

frequencies ranging from approximately 20 KHz to l0 MHz, with associated acoustic 

wavelengths in liquids of roughly 100 to 0.15 mm (not on the scale of molecular 

dimensions). Acoustic cavitation is the most important non linear phenomena due to 

ultrasound and its chemical effects. Acoustic cavitation is the formation, growth, and 

implosive collapse of bubbles in a liquid irradiated with sound or ultrasound. When 

sound passes through a liquid, it consists of expansion (negative pressure) waves and 

compression (positive pressure) waves. These cause bubbles (which are filled with both 

solvent and solute vapor and with previously dissolved gases) to grow and recompress. 

Under proper conditions, acoustic cavitation can lead to implosive compression in such 

cavities. Such implosive bubble collapse produces intense local heating, high pressures, 

and very short lifetime of bubbles, which causes the fast mixing. Cavitation is an 

extraordinary method of concentrating the diffuse energy of sound into a chemically 
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useable form (Ertl, 2000). Ultrasonication provides the mechanical energy for mixing and 

the required activation energy for initiating the transesterification reaction. Low-

frequency ultrasonic irradiation is a useful tool for emulsification of immiscible liquids. 

The collapse of the cavitation bubbles disrupts the phase boundary and causes 

emulsification, by ultrasonic jets that impinge one liquid to another (Stavarache, 2005). 

 On the basis of the above principle, several biodiesel production processes have 

been developed. In one such study, base-catalyzed transesterification of vegetable oil was 

performed (Starvarache, 2003, 2005) using low frequency ultrasound (28-40 kHz). 

Previous studies reported excellent ester yields (98-99%) with a low amount of catalyst in 

a much shorter time than with mechanical stirring. Excellent yields of biodiesel were 

further observed (Colucci, 2005) in an alkaline catalyzed transesterification of soybean 

oil using ultrasonic mixing in a shorter time at three different levels of temperature and 

four different levels of alcohol-to-oil ratios. The rate constants of this reaction were found 

to be 3-5 times higher than those reported in the literature for mechanical mixing. This is 

because of the increase in interfacial area and activity of the microscopic and 

macroscopic bubbles formed when ultrasonic waves of 20 kHz were applied to a two-

phase reaction system. In another experiment (Goldberg, 1966) the continuous 

alcoholysis of vegetable oils with ultrasonic vibrations (800-1200 cycles/s, irradiation 

intensity 1-2 W/cm2) resulted in an increased productivity (with or without catalysts) and 

an improved quality and color of the product without high- temperature treatment. It was 

reported that ultrasonic mixing had a significant effect on enzymatic transesterification as 

well. Ultrasonication showed higher (faster) transesterification rates (Shah, 2005; Wu, 
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2005) and higher operational stability for the enzymes,  without changing the 

characteristics of the enzymes (Hielscher, 2005). 

 

2.3 Solid Catalysis in Biodiesel Production 

The majority of the biodiesel production around the world is carried out by 

employing the homogeneous base catalyzed process because it is kinetically much faster 

than heterogeneously catalyzed transesterification and is economically viable. However, 

because of separation problems and product quality concerns, extensive research on 

heterogeneous catalysis towards the biodiesel production is ongoing all over the world.  

In general the factors which govern the path of transesterification reactions are 

nature of raw materials, types of catalysts and optimum experimental conditions 

(temperature, oil to methanol ratio and catalyst concentration). As far as experimental 

condition is concerned for the generation of methyl ester with high yield, optimization of 

certain parameters or the application of optimized parameters are necessary. For example, 

a solid base catalyst, prepared under the specified conditions of 3.5 wt%  KNO3 loadings 

on Al2O3 substrate followed by calcinations at 773 K for 5 h produced the catalytic group 

of Al-O-K and favored the conversion of soybean oil in to methyl esters (Xie, 2006) with 

a FAME yield of more than 75%. Similarly, a heterogeneous base catalyst, Na/NaOH/γ-

Al2O3, employed under the optimized reaction conditions such as the reaction time, the 

stirring speed, and oil to methanol ratio explored the catalytic activity equal to 

homogeneous NaOH catalyst. The conversion rate was increased over two orders of 

magnitude to the homogeneous reaction with several of the zeolite catalysts when metals 

are considered as catalysts (Suppes, 2004). They recommended temperatures of 25-65 °C 
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and a catalyst concentration of 1-3% for optimum transesterification yields. Moreover 

they also observed the largest conversions taking place in sodium hydroxide and 

zirconium based catalysts and the use of immobilized lipase catalyst failed to produce 

methyl esters.  

Demirbas (2003) revealed that the commonly accepted molar ratios of alcohol to 

glycerides for the transesterification of vegetable oils are 6:1-30:1. The change in 

catalyst-to-oil ratio under the reaction conditions of temperature of 650 °C, residence 

time 2.6 s and steam-to-oil weight ratio of 0.83 was explored. It was found that there was 

a slight increase in biodiesel production efficiency at the beginning stage and then, a 

decrease in biodiesel yield slightly thereafter which could be attributed to cracking of 

FAME at that higher temperature. The common reason for the change in the value of the 

catalyst-to-oil weight ratio is the change in contact conditions between oil and catalysts 

which in turn changes the average activation of catalysts. In general, as the catalyst-to-oil 

weight ratio increases, the probability of contact between oil and active centers also 

increases.  Under these conditions, maximum transfer of energy is possible favoring 

easier transesterification.  

Even though the role  of homogeneous catalysts are significant for the industrial 

or large scale production of biodiesel and for easy conversion at moderate temperatures 

(40 to 65 °C), some of the major disadvantages in using such catalysts during 

transesterification are its soluble tendency into the reaction mixtures which prevents the 

separation process. It has been reported that (Certinkaya, 2004), the solubility of 

homogeneous catalysts either in biodiesel layer and or in glycerin layer is possible to a 

certain extent. Current methods such as bubble washing, spray washing, counter current 
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washing, and agitation are extensively used to wash and purify the contaminated 

products. However, these processes are considered time consuming and uneconomical. 

Besides, catalysts contaminated crude glycerol which is separated by gravitational 

settling or centrifuging and is valued low in present markets which compounds the 

seriousness of the separation issue.   

Another problem associated with transesterification is the presence of water in the 

reaction mixture which causes the soap formation via saponification. An interesting 

remedial measure suggested (Filip, 1992) in relation of minimizing or preventing the 

soap formation is the use of 2 or 3 mol % K2CO3. The key role of K2CO3 in this case is 

the formation of corresponding bicarbonate salt instead of water. Similarly during the 

production of non digestible polyol polyesters through interesterification of fatty acids 

with polyols,  e.g. sucrose, several improvements, such as the application of low 

temperature and/or high pressure for increasing the mass transfer area, using back mixing 

in the initial stages, and plug-flow conditions in the final stages have been exercised. 

As compared to homogenously catalyzed process, the transesterification with 

solid catalyst occurs at harsher reaction conditions i.e. at higher temperatures and 

pressures. This is because of the fact that the solid catalyzed process is a immiscible 

liquid/liquid/solid 3-phase system (corresponding to oil, methanol & catalyst)(Singh, 

2007) that is highly mass transfer limited. In one study, supported solid catalysts 

CaO/MgO was used (Wang, 2005) for the transesterification of rapeseed oil at a 

relatively low temperature of 65oC  by impregnating on a MgO support followed by 

calcination at 700oC in Ca(Ac)2 solution. The catalyst showed higher activity with a 

glycerol yield of more than 80 % purity. In other work (Serio, 2006) soybean oil was 
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transesterified at 100oC with methanol using MgO and calcined hydrotalcites (CHT) as 

catalysts. Four different basic sites were individuated at MgO and the calcined 

hydrotalcites for the transesterification and the strongest basic site was able to do the 

transesterification reaction below 100oC. More than 45 % of biodiesel yield was observed 

in case of MgO and more than 75 % yield was observed in case of CHT. It was reported 

that at a higher temperature of 200oC, more than 95 % of yield was observed for MgO 

and CHT catalysts. Biodiesel production with High Surface Area (HSA) nanocrystalline 

metal oxides on TiO2, MgO and CaO supports were investigated (Dean, 2006). M-

Acetylacetonate (AcAc) was supported on the HSA support where M being Na, K, Ca, 

Li, V, Fe, N, and Al. The best catalysts tested were CaO and AcAc supported on MgO 

and TiO2.  

  In a different work biodiesel production of jatropha curcas (Zhu, 2006) oil with a 

solid catalyst CaO dipped in ammonium nitrate followed by calcination at 900oC showed 

an oil conversion of 93% at 70oC after 3.5 hrs of transesterification. The catalyst dosages 

and the oil to methanol ratio used in the study were 1.5 % and 9:1 respectively.  In other 

work of soybean oil transesterification (Liu, 2007) with SrO as a heterogeneous catalyst, 

a yield in excess of 95 % was observed below 70oC within 30 min. A long catalyst 

lifetime of SrO was also investigated as it sustained the activity after repeated used for 10 

cycles. 

 

2.4 Kinetics of Transesterification 

 Although the importance of biodiesel as an alternative fuel has grown during the 

last twenty years, the chemical kinetics of transesterification, very important for process 
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design, remain controversial. Kinetics describes the rate of chemical reactions. Rate 

equations are typically written in terms of the concentration of the reactants. In the past, it 

has been observed that the base catalyzed transesterification is a second order reaction 

(Darnoko, 2000). This has been confirmed in a different work for the transesterification 

of soybean oil with methanol using sodium hydroxide a homogeneous catalyst 

(Noureddini, 1997). In this work, it was assumed that transesterification is a three-step, 

reversible process, and the reaction rate constants and activation energies were 

determined for all the forward and reverse reactions.   

In a different work, the rate constants and the reaction order were determined for 

each of the steps in the presence of a catalyst with a computerized kinetics program 

(Freedman, 1986).  It was found that the forward reactions appear to be pseudo-1st order 

or 2nd order depending upon conditions used.  Reverse reactions appeared to be 2nd 

order.  At a MeOH/oil molar ratio of 6:1, a shunt reaction was observed.  Activation 

energies were determined for all forward and reverse reactions under a variety of 

experimental conditions for plots of log k vs. 1/T (where k is the rate constant and T is 

the temperature). 

 

2.5 Upgrading Biodiesel 

 One major limitation of biodiesel is problems associated with cold flow and filter 

plugging due to oxidative instability. Oxidative instability arises as a result of the 

presence of unsaturation in the biodiesel (fatty acid methyl esters) and the cold flow 

problems are because the presence of saturation in the fatty acid methyl esters. 

Accordingly, research is ongoing by numerous groups to upgrade the biodiesel via 
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techniques including deoxygenation, hydrodeoxygenation, decarboxylation etc. in order 

to get rid of unsaturation and oxygen from fatty acid methyl esters.  Although upgrading 

of biodiesel has not received much of attention, this is an important parameter that needs 

to be resolved before widespread commercialization of biodiesel, especially in regions 

prone to colder climates. Following are some work that has been done in this regard.   

 The behavior of HZSM-5 zeolite in the upgrading of wood pyrolysis oil produced 

in the fast-pyrolysis plant was studied (Vitolo, 1999, 2000) in repeated upgrading-

regenerating cycles. As a consequence of the catalytic process, coke and tar were also 

formed as undesirable by-products. The continued regeneration of the zeolite by air at 

500oC, reduced the effectiveness of the catalyst in converting biomass pyrolysis oils to an 

aromatic product. Finally, an irreversible deactivation was observed. Even if the 

regeneration was conducted at 500oC, localized raisings of temperature above 500oC due 

to the combustion of coke caused dehydroxylation of the Brownsted acid sites that 

predominate in zeolites activated at 500oC with formation of Lewis acid sites. Thus, the 

active acid sites in the upgrading reactions are presumed to be preferentially Brownsted 

acid sites, which were gradually deactivated by the repeated regeneration treatments.  

 In a different work (Fernandes, 2006) a method for the reduction of esters using a 

high oxidation state oxo-complex as a catalyst was reported. The system silane/MoO2Cl2 

(5 mol %) proved to be very efficient for the reduction of aliphatic and aromatic esters to 

the corresponding alcohols in good yields. 

 Elimination of oxygen from carboxylic groups was studied (Senol, 2005) with 

model compounds, methyl heptanoate and methyl hexanoate, on sulphided NiMo/g-

Al2O3 and CoMo/g-Al2O3 catalysts in a flow reactor. Catalyst performances and reaction 
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schemes were addressed. Carboxylic acid was further converted to hydrocarbons either 

directly or with an alcohol intermediate. Decarboxylation of the esters led to 

hydrocarbons in the third path. No oxygen containing compounds were detected at 

complete conversions. However, the product distributions changed with time, even at 

complete conversions, indicating that both catalysts deactivated under the studied 

conditions.  

In a different study (Kuvickova, 2005), deoxygenation reaction of vegetable oils 

over a carbon-supported metal catalyst was studied as a suitable reaction for production 

of diesel fuel-like hydrocarbons. Stearic acid, ethyl stearate, and tristearine have been 

used as model compounds. Catalytic treatment of all the three reactants resulted in 

production of n-heptadecane as the main product with high selectivity. 

 On the basis of the literature review, it was imperative that more work is needed 

to be done to find a robust enough solid catalysts selective towards transesterification. 

This work also was targeted towards finding an effective catalyst that could increase the 

oxidative stability and/or cold flow properties of biodiesel. 
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CHAPTER III 

MATERIALS AND METHODS 
 
 

This chapter discusses the materials and methods used in this study. Section 3.1 

depicts materials and methods used in ultrasonic processing of triglycerides to produce 

biodiesel. Section 3.2 presents the material and methods used in the catalyst screening 

studies and section 3.3 describes the methodologies used in the catalyst characterization. 

Principles and methods used during transesterification kinetics study have been discussed 

in section 3.4. Finally, Section 3.5 discusses the principles of and methods used for the 

thermodynamic analysis and the deoxygenation studies of biodiesel.  

3.1 Biodiesel Production Using Ultrasonication 
 

In the present study, the transesterification of soybean oil using potassium 

hydroxide as an alkaline catalyst was performed with an ultrasonic processor. This 

processor used electric excitation to generate ultrasound, which was transmitted into the 

liquid sample via a sonotrode that caused mixing and provided the necessary energy for 

the transesterification. The main aim of this research was to find the effects of the wave 

amplitudes and reaction time (and hence, total energy input and temperature) on the yield 

of biodiesel.  
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3.1.1 Reagents and materials 

Solvent-extracted degummed soybean oil was purchased from Bunge Corporation 

(Marks, MS, USA). Potassium hydroxide (99 %) was purchased from Sigma- Aldrich, 

(St. Louis, MO, USA)., and used as a catalyst for the reaction. Methanol (99.9%) was 

purchased from Fisher Scientific (Hampton, NH, USA.). 

 

3.1.2 Equipment  

An ultrasonic processor (UP400S, Hielscher, Ringwood, NJ, U.S.A.) was used to 

perform the transesterification reaction. The equipment consisted of the processor, the 

sonotrode, and the PC control (UPC400T). The processor operated at 400 W and 24 kHz 

frequency. The amplitude and the pulse for the reaction were adjustable from 20 to 100% 

and from 0 to 100%, respectively. The titanium sonotrode (H22D) with a diameter of 22 

mm and a length of 100 mm was used to transmit the ultrasound into the liquid. Using the 

PC control, the process parameters such as amplitude, pulse, and operating time were 

modulated. The control system automatically recorded the actual energy input and 

resultant temperature variation. 

 

3.1.3 Transesterification  

A mixture of 25 ml of methanol and 1 g of potassium hydroxide was agitated 

using a magnetic stirrer for 5 min to form the methoxide and then 100 ml of Soybean oil  

was mixed with the previously prepared potassium methoxide (1:6 molar ratio) in a 

conical flask. Then, the mixture was transferred to the reaction chamber to be subjected 

to ultrasound waves. The sonotrode was submerged up to 25 mm into the solution. The 
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amplitude and time of the reaction were adjusted by the PC controller. The four different 

amplitudes were 25%, 50%, 75%, and 100%, and the four different durations were 5, 10, 

15, and 20 min. The pulse of the reaction was kept constant for all combinations at 100%. 

All the combinations were tested with three replicates. After completion of the reaction, 

the solution was treated with concentrated sulfuric acid in order to neutralize the 

potassium hydroxide and to immediately stop the reaction. The product, a mixture of 

fatty acid methyl esters (FAME’s) and glycerol, was then transferred to a freezer (-5oC) 

before sending it for gas chromatography (GC) analysis. 

 

3.1.4 Gas chromatography analysis  

Samples obtained from the top layers of the mixture (after stabilization) were sent 

for GC analysis. The analysis was done with GC6890N (Agilent Technologies, Inc., 

Santa Clara, CA) with FID connected to a Solgel premium capillary column (30 m × 0.25 

mm × 0.25 μm), and with MSD connected to HP-5MS column (30 m × 0.25 mm × 0.25 

μm). Quantification analysis utilized FID. The oven was first held at 190 oC for 2 min, 

and then ramped to 214 oC at a rate of 3 oC/min. The injection volume was 0.2 μL, and 

split ratio was 100/1. The inlet temperature was 250 oC, and the detector temperature was 

270 oC. Samples were added with methyl undecanoate (≥ 99%) as the internal standard, 

and diluted with chloroform (Assay 100%, HACH Company, Loveland, CO). Calibration 

employed ethyl palmitate (≥ 99%), ethyl stearate (≈ 99%), ethyl oleate (98%), ethyl 

linoleate (≥ 99%), and ethyl linolenate (≥ 98%). 
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3.2 Biodiesel Production with Solid Catalysts 

 

3.2.1 Reagents and materials 

 Solvent-extracted degummed soybean oil donated by Bungi Corporation (Marks, 

MS, USA) was used as the triglyceride. The solid catalysts (PbO, PbO2, Pb3O4, MgO, 

ZnO, CaO, Tl2O3, MnO2, BaO and CaO) and methanol (99.9 %) used in the study were 

purchased from Sigma Aldrich (St-Louis, MO, USA) and Fisher Scientific (Hampton, 

NH, USA).  

 

3.2.2 Preparation of mixed metal oxides  

 From equation 1.1 to 1.4 it is clear that sodium is responsible for the 

transesterification of soybean oil with NaOH. Wen et. al. (1996) incorporated sodium on 

lithium oxide and alumina in order to prepare a layered double hydroxide. From our 

preliminary study with alumina towards transesterification we found that alumina is not a 

good catalyst towards transesterification whereas lanthanum has a positive effect towards 

transesterification. So we incorporated sodium on lithium and lanthanum to get a solid 

mixed oxide catalyst. In order to prepare this catalyst a mixture of 0.1 moles of lithium 

hydroxide, 0.2 moles of sodium hydroxide and 0.05 moles of lanthanum oxide in 150 ml 

of distilled water were treated hydrothermally at four different temperatures of 25, 100, 

150 and 200 oC (labeled as 25oC - NaMO1, 100oC - NaMO2, 150oC - NaMO3 and 200oC 

- NaMO4) in a high pressure batch reactor for 10 h followed by vigorous mixing at room 

temperature for the next 10 h. The prepared catalysts were washed thoroughly with 
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distilled water until the pH reached and was maintained at 7.0. Then, the catalysts were 

calcined at 500oC.  

 

3.2.3 Preparation of layered double hydroxides (LDH)  

 A drop wise solution of  37.5 g of Al(NO3)2.9H2O in 250 ml of distilled water was 

added to a mixture of  78.3 g of lithium hydroxide (LiOH.H2O) and 5.1 g of Na2CO3 in 

600 ml of distilled water at room temperature with vigorous mixing (Shumaker, 2007).  

Then, the catalyst was aged for 24 hrs overnight at 75oC followed by 

Centrifuging/Decanting/Washing. The prepared catalysts were washed thoroughly with 

distilled water in order to maintain PH =7 and finally the catalysts were dried at 105oC 

and calcined at 450oC for 2 hrs. This catalyst was labeled as LiLDH.  

 

3.2.4 Equipment 

 The transesterification with all the solid catalysts was carried in a fully automated 

high-pressure high-temperature batch reactor (PARR Instrument, 4843, Moline, Illinois, 

USA). The equipment consists of a high pressure cylindrical chamber, a heater, a water 

line (in order to control the temperature) and a stirrer. 

 

3.2.5 Transesterification of soybean oil  

 A mixture of 30 ml methanol and 100 ml of soybean oil (equivalent to 7:1 molar 

ratio) was prepared using a magnetic stirrer and then 2 g of solid catalyst was added into 

the high pressure reaction vessel. Three different temperatures of 75, 150 and 225oC was 

selected for the comparison of the biodiesel (FAME) yield. The transesterification was 
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done at the selected temperature for 2 hours and then the products were separated, frozen 

and sent for gas chromatography (GC) analysis. The products were frozen in order to 

terminate the transesterification reaction. 

 

3.2.6 Transesterification for kinetics analysis 

 Two different methods of transesterification were followed for the kinetics 

analysis of metal oxides and mixed metal oxides. For some of the catalysts, (PbO, MgO, 

MnO2, NaMO1, NaMO2, NaMO3 and NaMO4,), the mixture (oil, methanol and catalyst) 

was first heated to 215 0C (it was found that there was only slight conversions ranging 

from 3 to 4 % during the ramping period).  Then the reaction was carried out for 2 hours 

in the high-pressure reactor. Samples were taken out in 15-minute intervals and the fatty 

acid methyl esters yield was measured with gas chromatography. For the last two 

catalysts, (CaO and BaO), it was observed that significant conversions took place during 

the first few minutes of the reaction (46 % and 20 %, respectively) while ramping up the 

temperature to 215 0C. Accordingly, the method was changed for these two experimental 

units. In this case, the oil was first heated with the catalyst to 215 0C, and then 30 ml of 

methanol was injected using a HPLC pump at a flow rate of 10 ml/min for 3 minutes. 

Then, the experiments were carried out for the next 14 minutes at a sampling interval of 2 

minutes. The product (a mixture of fatty acid methyl esters and glycerol) was separated 

and then transferred to a freezer before being sent for gas chromatography (GC) analysis.   
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3.2.7 Gas chromatography analysis 

 The top layer of each sample, after stabilization, was analyzed for FAME 

composition at the Mississippi State Chemical Laboratory, Mississippi State University, 

with gas chromatography (methods mentioned in section 3.1.4).  

 

3.3 Catalyst Characterization 

 

3.3.1 Determination of surface area of the catalysts 

 Surface area of the metal oxides was measured with multipoint Brunauer, Emmett 

and Teller (BET) method from the Quantachrome Surface Analysis Instrument (Autosorb 

1-C, Boynton Beach, Florida, USA). This was done using nitrogen adsorption/desorption 

isotherms at liquid nitrogen temperature and relative pressures (P/Po) ranging from 0.04-

0.4 where a linear relationship was maintained. 

  

3.3.2 Determination of acid/base strength 

 Site strength refers to the relative tendency of an acid or base to donate or accept a 

proton. The strength of acid and bases can be compared by their reaction with water. 

Acidic and basic site strengths of each of the metal oxides were determined (Xie, 2006) 

by basic and acidic Hammett indicators respectively. Approximately 50 mg of sample 

was shaken with 1 ml of a solution of Hammett indicator diluted in benzene and 

methanol for basic and acidic tests respectively and left to equilibrate for two hours. The 

color of the catalyst was then noted. The basic Hammett indicator (for acid site strength) 
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used were: Neutral red (pKa=6.8), Methyl red (pKa=4.8), P-dimethylaminoazobenzene 

(pKa=3.3) and Crystal violet (pKa=0.8). The acidic Hammett indicators (for base site 

strength) used were: Phenolphthalein (pKBH+=8.2), Nile blue (pKBH+=10.1), Tropaeolin 

(pKBH+=11), 2,4-dinitroaniline(pKBH+=15), 4-chloro-2-nitroaniline (pKBH+=18.2) and 4-

chloroaniline (pKBH+=26.5). The H0 value of a sample at acid site was determined by the 

smallest H0 value among the Hammett indicators which has been subjected to a color 

change and which had the H0 value less than 7.0. And the H0 value of a sample at the 

base site was determined by the greatest H0 value among the Hammett indicators which 

had been subjected to a color change and having H0 value more than 7.0.   

 

3.3.3 Determination of acidity /basicity  

 A common method for evaluating the basicity of a base is to report the acidity of 

the conjugate acid and vice versa for the acidity. In our case, the method of titration was 

used (Zhu, 1999) to determine the acidity/basicity of the catalysts. For Basicity, the basic 

catalyst was mixed with a known concentration of HCl. The basic catalyst will neutralize 

HCl by an equivalent amount to its basicity. As a result, the original concentration of HCl 

will be reduced. The resultant concentration of HCl was determined by titration with 

NaOH and finally the adsorbed amount of HCl on the catalyst was determined. In 

retrospect, for acidity determination, an acidic catalyst was mixed with a known 

concentration of NaOH and the amount of NaOH adsorbed to the catalysts was 

determined via titration with HCl. For amphoteric catalysts both acidity as well as 

basicity was determined.  
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3.3.4 X- ray Diffractogram and Scanning Electron Microscope analysis 

 X- ray diffraction images, SEM and elemental analysis images were analyzed in 

the Electron Microscopic Center, Mississippi State University for Different layered 

double hydroxides and mixed oxides. 

 In the X-ray analysis the powder of NaMO catalysts was identified by X-ray 

diffraction with Rigaku III X-ray diffraction system using CuKα (40 kV/ 44 mA) radiation 

(� = 0.8 mm) and a scanning rate of 1o min-1. The pattern was over the range of 10o < 2θ 

< 90o. 

In the SEM analysis with LaB6 emitter system at Mississippi State University, 

electrons are thermionically emitted from a tungusten or lanthanum hexaboride (LaB6) 

cathode and are accelerated towards an anode. Tungsten was used because it has the 

highest melting point and lowest vapor pressure of all metals, thereby allowing it to be 

heated for electron emission. The electron beam, had an energy range of 0-5 keV, was 

focused by a condenser lenses into a beam with a very fine focal spot sized of 60 μm. 

Standard used in this analysis were CaCO3, SiO2, Pure Aluminum and LaB6. 

 

3.4 Kinetics of Transesterification 

The transesterification reaction is a reversible reaction and therefore, excess 

methanol is used to drive the reaction forward. Equation 3.1 shows the generalized 

transesterification reaction, where A is the triglyceride, B is methanol, C is FAME and D 

is glycerol. The equation also shows the stoichiometric relationship between the reactants 

and the products. 
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DCBA +⇔+ 3                (3.1) 

 The general rate equation for the Equation 3.1 will be, 

βα
BA

A CkC
t

C
=−

d
d                                        (3.2) 

Where, 

t
C A

d
d

−  = the consumption of reactant A per unit time 

 k     = rate constant 

AC   = concentration of A after time t 

BC   = concentration of B after time t 

  α     = reaction order of reactant A 

   β     = reaction order of reactant B 

Also, 

)1(0 XCC AA −=                                       (3.3) 

)3(0 XCC BAB −= θ                                (3.4) 

00 / ABB CC=θ                                           (3.5) 

Where, 

 0AC  = initial concentration of A 

 0BC  = initial concentration of B 

 X     = conversion 

 θB    = the ratio of CB0 to CA0    

Equation 3.2 can be written as 
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βαβα θ )3()1(1
d

d )(
0

XXkC
t
X

BA
−−−= +

            (3.6) 

 In the present work, 8 different cases were analyzed in order to get the reaction 

order. These case were, 

  (α =0, β =0) ; (α =1, β =0) ; (α =0, β =1) ; (α =1, β =1) ; (α =2, β =0) ; 

(α =0, β =2) ; (α =2, β =1) ; (α =1, β =2).  

 For each case, definite integrals of Equation 3.6 were calculated from a 

conversion of X=0 to a conversion of X=X in the time span of t = 0 to t = t. Then the 

calculated equation for each case was transferred into a linier equation passing through 

origin (y=mx). The transferred equations for all the 8 cases are as follows: 

Case 1: (α =0, β =0) 

ktXCA =0                                                  (3.7) 

Case 2: (α =1, β =0) 

kt
X

=
−

)
1

1ln(                                           (3.8) 

Case 3: (α =0, β =1) 

ktX

B

B =
−

− ])3([ln
3
1

θ
θ                               (3.9) 

Case 4: (α =1, β =1) 

tkC
X

X
A

B

B

B
0]

)1(
)3(ln[

)3(
1

=
−
−

− θ
θ

θ
                (3.10) 

Case 5: (α =2, β =0) 

tkC
X

X
A0)1(

=
−

                                             (3.11) 
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Case 6: (α =0, β =2) 

tkC
X

X
A

BB
0)3(

=
− θθ

                                          (3.12) 

Case 7: (α =2, β =1) 

 tkC
X

X
X

X
A

B

B

BB

2
0]}

)1(
)3(ln[

)3(
3

)1(
{

)3(
1

=
−
−

−
−

−− θ
θ

θθ
              (3.13) 

Case 8: (α =1, β =2) 

tkC
X

X
X

X
A

B

B

BBBB

2
0]}

)3(
)1(ln[

)3(
1

)3(
3{

)3(
1

=
−

−
−

−
−− θ

θ
θθθθ

       (3.14) 

 

 For Equations 3.7 through 3.14, if it is assumed that the left side component is an 

ordinate (y variable) and t (for eq. 3.7 to 3.9), CA0t (for eq. 3.10 to 3.12) and CA0
2t (for 

3.13 to 3.14) are abscissas (x variable) respectively, the equations are in the form of 

y=mx  (a straight line passing through origin). For all 8 cases, the y variable was plotted 

against the corresponding x variable and the coefficient of determination (R2) was 

determined. In all the cases (Eq. 3.7 to 3.14), the slope of the straight line is the rate 

constant (k) for the reaction. The highest R2 for each case was observed and the case that 

gave the highest R2 was used to determine the reaction order. 

 

3.5 Biodiesel Upgrading 

 This section presents the principles of thermodynamic analysis and the methods 

used for biodiesel deoxygenation. 
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3.5.1 Thermodynamic analysis 

The thermodynamic analysis was done in order to predict the amount of 

deoxygenated product. The second law of thermodynamics says that a mixture of 

chemicals satisfies its chemical equilibrium state (at constant temperature and pressure) 

when the free energy of the mixture is reduced to a minimum. Therefore the composition 

of the chemicals satisfying its chemical equilibrium state can be found by minimizing the 

function of the free energy of the mixture. Gibbs energy of formation is important in the 

analysis of chemical reactions. Values for individual compounds are required to 

determine the change in Gibbs energy of reaction. If the change in Gibbs energy is 

negative, the thermodynamics for the reaction are favorable. On the other hand, if the 

change in Gibbs energy is highly positive, the thermodynamics for the reaction are not 

favorable. So if  

   ∆Greaction <  0 kjoule/mol  [reaction favorable] 

    0  <  ∆Greaction <  50 kjoule/mol [reaction possibly favorable] 

    ∆Greaction >  50 kjoule/mol  [reaction not favorable] 

If the pressure and the temperature of the system are constant, the equilibrium of 

the system is given as follows (Denbigh, 1966): 

∑
=

=
K

i
iidndG

1
μ          (3.15) 

Where iμ  and ni are the chemical potential and the number of moles of species i, 

respectively. K is the total number of chemical species in the reaction mixture.  
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The objective is to find the set of ni’s which minimize the value of G. This can be 

solved in two ways (Smith and Missen, 1982): (i) stoichiometrically and (ii) non-

stoichiometrically. In the stoichiometric approach, the system is described by a set of 

stoichiometrically independent reactions, and they are typically chosen arbitrarily from a 

set of possible reactions (Fishtik, 2000). In contrast, with the non-stoichiometric approach 

the equilibrium composition is found by the direct minimization of the Gibbs free energy 

for a given set of species (Win, 2000). The advantages of non-stoichiometric approach 

over the stoichiometric approach are as follows (García and Laborde, 1991): (a) a 

selection of the possible set of reactions is not necessary, (b) no divergence occurs during 

the computation, and (c) an accurate estimation of the initial equilibrium composition is 

not necessary. The non-stoichiometric approach has been used in this study. Eq. 3.15 can 

be written as follows: 

∑
=

=
K

i
iinG

1
μ           (3.16) 

To find the ni that minimize the value of G, it is necessary that the values of ni 

satisfy the elemental mass balances as given in Eq. 3.17.  

.M1,  l          ,
1

…==∑
=

l

K

i
ili bna         (3.17) 

where lia  is the number of gram atoms of element l in a mole of species i and lb is the 

total number of gram atoms of element l in the reaction mixture. M is the total number of 

atomic elements. 

Eq. 3.16 can be further expressed as (Lwin et al. 2000; Vasudeva et al. 1996):  

∑∑∑
===

++Δ=
K

i
i

K

i
ii

K

i
ii PnRTynRTGnG

111

0 lnln      (3.18) 
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where 0
iGΔ  is the standard Gibbs free energy of formation of species i. R is the universal 

gas constant and T is the temperature. yi is the mole fraction of species i and P is the total 

pressure of the system.  

At low pressure and high temperature, the system can be considered as ideal 

(Lwin et al. 2000; Vasudeva et al. 1996). The objective function (3.18) was minimized 

using PROC NLP in SAS 9.1. It was also solved by the Lagrange’s multiplier method 

using SAS 9.1 while satisfying the elemental mass balances as given in Eq. 3.17. As 

entry data the program needs pressure, temperature, number of compounds, number of 

atoms, values of the Gibbs free energy of formation, and initial guesses for ni’s in the 

equilibrium. Thermodynamic data were obtained from Yaws (1999).  

 

3.5.2 Materials and methods used in deoxygenation of Biodiesel 

 Two different experiments were carried out in order to upgrade biodiesel. The 

first one was the conversion of esters to the corresponding alcohols, a fundamental 

process in organic synthesis, which has gained renewed interest due to the need of 

converting fatty acid esters and other natural carboxylic acid derivatives into fuels or 

chemical feedstocks (Fernandes et. al., 2006). In this experiment methyl linoleate was 

used for the analysis since the soybean oil contains around 55-60% of methyl linoleate. 

To a solution of MoO2Cl2 (5% mol) in dry toluene (5 ml) was added the ester (1.0 mmol) 

and phenyl silane (PhSiH3, 2.0 mmol) under nitrogen atmosphere. The reaction mixture 

was stirred at reflux temperature of 115oC for 20 h. After evaporation, the reaction 

mixture was purified by silica gel column chromatography with the appropriate mixture 
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of n-hexane and toluene. Then, the sample was sent to the Mississippi State Chemical 

Laboratory, Mississippi State University for the mass spectrometric analysis. 

 The second experiment in order to upgrade the biodiesel was carried out with 

HZSM-5 zeolite (Calcined ZSM at 450oC for 4 hrs). 100 ml of pure biodiesel was mixed 

with 2 g of HZSM-5 catalyst in a high pressure reactor (Parr reactor) at three different 

temperatures of 215, 315 and 375oC for 10 hrs. Finally the product was centrifuged at 

4050 rpm for 15 min in order to separate the catalyst out of mixture and then the samples 

were analyzed with mass spectrometer. 
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CHAPTER IV 

RESULTS AND DISCUSSION 
 
 

This chapter discusses the results and discussions of the present study. Section 4.1 

presents the results pertinent to the ultrasonic processing study. Section 4.2 depicts the 

catalyst screening results. Catalyst characterization results have been described in Section 

4.3. Section 4.4 shows the results of kinetic analysis followed by the reactor modeling. 

Finally Section 4.5 presents the results associated with upgrading biodiesel and fatty acid 

methyl esters.     

4.1 Ultrasonic Processing for Biodiesel Analysis 

 In order to compare the results from ultrasonication, a control study was done 

without the application of ultrasonication. And it was found that for 100 ml of soybean 

oil and 25 ml of methanol with 1 g of KOH, took almost 1 hr for the transesterification 

for a FAME yield of 99%.  

The above result of control sample was compared with the results from 

application of ultrasonication, and it was found that the application of ultrasonication was 

able to produce same amount of FAME yield in 5 min. Figure 4.1, 4.2 and 4.3 depicts 

overlaid images of biodiesel yield, input energy and reactant temperature variation with 

sonic amplitudes and time. The biodiesel yield (FAME %) from gas chromatography 

analysis showed a large variation due to the change in amplitude and reaction time (the 
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combination). The data collected from GC analysis showed a high yield of 

biodiesel (up to 99.34%) in a seemingly short time. 

 

Figure 4.1   FAME yield variations with time and sonic wave amplitude 

 

 

Figure 4.2   Input energy variations with time and sonic wave amplitude 
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Figure 4.3   Temperature variations with time and sonic wave amplitude 

4.1.1 Effect of amplitude 

The amplitude of sound waves had a large effect on the transesterification 

reaction. To better explain the results, data on input energy, temperature and yield for 

slices across Figure 4.1, 4.2 and 4.3 at 5 min, 10 min, 15 min and 20 min are depicted in 

Table 4.1.  

At 5 min after the initiation of the reaction, it was clearly established that 

increasing wave amplitude resulted in an increase in reaction temperature as well as 

biodiesel yields. At the 100 % amplitude level, the ester yield was more than 99 % 

(highest in all the 16 amplitude-sonication time treatment combinations) and the 

corresponding input energy and temperature was 131177 J and 89oC, respectively (Table 

4.1). 
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Table 4.1   Effects of amplitude, reaction time on yield of biodiesel via ultrasonication 
 

 

 

Also all four amplitudes generated greater than 95% biodiesel yield in 5 min. 

Subjecting ultrasonication for 10 min produced high ester yields only at lower 

amplitudes. For example, an increase in amplitude from 25 to 50 % resulted in an ester 

Amplitude, % Reaction time, 
min 

Input energy, 
J 

Temperature, 
oC 

Yield, % 

25 5 79538 64 95 

50 5 91039 74 97 

75 5 125201 79 98 

100 5 131177 89 99 

25 10 147022 69 95 

50 10 214951 91 97 

75 10 216911 107 91 

100 10 274085 124 77 

25 15 151975 72 99 

50 15 303461 110 88 

75 15 325500 136 58 

100 15 409828 136 47 

25 20 236971 74 87 

50 20 310414 107 69 

75 20 464485 120 52 

100 20 546569 149 43 
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yield increase from 95 to 97%. However, at higher amplitudes, ester yields reduced 

drastically. This might be possible because of cracking followed by oxidation of the fatty 

acid methyl esters to aldehydes, ketones and lower chained organic fractions. It was 

observed that the ester yields were maximized at an optimum energy level. Similar trends 

were observed for 15 min and 20 min of ultrasonication at different amplitude levels.  

4.1.2 Effect of input energy  

 The data for input energy (i.e. sound energy) and yield of FAME’s are shown in 

Fig. 4.4. According to the Fig. 4.4, it is evident that as the input energy increased, the 

FAME yield increased, reaches a maximum and started to decline. The reduction of 

FAME yield was attributed to thermal cracking. It was observed that in order to obtain 

biodiesel yields above 97%, the range for input energy to the transesterification should be 

maintained between 1.40 to 2.41 kJ/g of soybean oil.  

 

 

Figure 4.4   Effect of input energy on the fatty acid methyl esters yield. 
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4.2 Biodiesel Production with Solid Catalysts 

 

4.2.1 Transesterification with metal oxides 

 The FAME yield after transesterification varied significantly among the catalysts 

tested. Also, there was a diverse response to temperature variations among different 

catalysts. Fig. 4.5 depicts the biodiesel (FAME) yield for all the catalysts (MgO, CaO, 

PbO, PbO2, Pb3O4, ZnO and Tl2O3) at three different temperatures of 75, 150 and 225oC. 

MgO and Pb3O4 showed an increasing trend with increased temperature. Initially, at 75oC, 

both of them had an insignificant FAME yield (less than 5 %), however, at higher 

temperatures (at 215oC), the yield was increased to 74 and 89 %, respectively. The 

FAME yield of Tl2O3 and ZnO peaked around 150oC and showed a precipitous decline at 

225oC. This may be attributed to cracking of esters at higher temperatures.  

 

 

0
10
20
30
40
50
60
70
80
90

100

50 75 100 125 150 175 200 225
Temperature, oC

FA
M

E 
yi

el
d,

 %

MgO
PbO
ZnO
PbO2
Pb3O4
Tl2O3
CaO

 

Figure 4.5   FAME yield with different solid catalysts 
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This observation is further reinforced by the fact that the resultant product looked much 

darker than in color than samples that had higher FAME yields.  PbO and PbO2 showed 

almost an identical trend at all the three temperatures tested. A maximum FAME yield of 

89 % was observed for both catalysts at 150oC. The only difference in Pb3O4 was that the 

increasing FAME yield trend sustained even beyond 225oC. Lead oxides, by far were the 

most potent for transesterification from all the oxide catalysts tested. It was interesting to 

note that CaO has displayed a different trend to the other catalysts. CaO was selective 

towards transesterification at all the temperatures tested and gave FAME yields of 46, 81 

and 67 % at 75, 150, and 225oC respectively.   

 Figure 4.6 shows the biodiesel (FAME) yield  for all the catalysts, PbO, 

MgO, MnO2, BaO and CaO, over 2 hours of transesterification. For PbO the yield was 

found to be more than 84 % after 1 hour, for MgO the maximum yield was found to be 

approximately 66% after 2 hours and for MnO2 the yield surpassed 80 % after 2 hours.  
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Figure 4.6   FAME yield for PbO, MgO, MnO2, BaO and CaO (reaction times denoted 
represent time after reactants reached 215oC) 

 

 

For BaO and CaO, biodiesel yield was found to be more than 95% and 75% 

within 15 and 30 min respectively. Cracking of the methyl esters was observed 

subsequent to these time periods. The initiation of reduction of methyl esters yield could 

be attributed to the pretense that the rate of cracking exceeded the rate of 

transesterification for BaO and CaO after 15 and 30 minutes respectively under the 

provided reaction conditions. As a result, only 2 data points for BaO and 3 data points for 

CaO were at hand to calculate the reaction order and rate constant - which was not 

sufficient (Figure 4.6). Consequently, in order to capture the trend, the method was 

modified for these two catalysts. The data was collected in 2 min intervals for 14 minutes 

after attaining a temperature of 215 0C. The FAME yield for the BaO catalyst surpassed 

85 % after 14 minutes and 78% for catalyst CaO after 2 min (figure 4.7). 
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Figure 4.7   FAME yield for BaO and CaO (reaction times denoted represent time after 
reactants reached 215oC) 

 

 

4.2.2 Screening of mixed metal oxide 

 The prepared catalysts NaMO1, NaMO2, NaMO3 and NaMO4 were subjected to 

transesterification in a high pressure reactor for different temperatures and durations. 100 

ml of soybean oil, 30 ml of methanol and 2 gm of each of catalysts were used for the 

transesterification at three different temperatures (70oC, 100oC and 215oC) in a high 

pressure reactor for 2 hrs. The sampling interval was 30 min. Finally, the percentages of 

fatty acid methyl esters (FAME) were evaluated using gas chromatography analysis.  

Figures 4.8, 4.9, 4.10 and 4.11 show the FAME yields with NaMO1, NaMO2, NaMO3 

and NaMO4 respectively. 
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Figure 4.8   FAME yield for NaMO1 at two different temperatures 
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Figure 4.9   FAME yield for NaMO2 at two different temperatures 
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Figure 4.10   FAME yield for NaMO3 at two different temperatures 
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Figure 4.11   FAME yield for NaMO4 at two different temperatures 
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Among all four LDH catalysts tested, NaMO1 showed the highest yield, more than 99% 

selectivity towards the transesterification (Figure 4.8) at 215oC. Other catalysts also 

showed favorable transesterification yields. We reused the NaMO1catalyst for the 

transesterification and it was found that more than 63% of the FAME was produced with 

the second use of the same NaMO1 catalyst. 

 

4.2.3 Screening of layered double hydroxides 

 Soybean oil,  methanol and the prepared  LDH catalysts were used for the 

transesterification at three different temperatures (65oC, 150oC and 215oC) in a high 

pressure reactor for three different time periods, i.e., 1, 2 and 4 hrs for two molar ratios of 

methanol and oil (15:1 and 40:1). Figure 4.12, 4.13 and 4.14 shows the FAME yield with 

LiLDH catalyst at three different reaction conditions.  
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Figure 4.12   FAME yield with LiLDH at 15:1 methanol to oil ratio and 1 % (by 
wt.) of the catalyst for 1 hr of transesterification 

 



www.manaraa.com

52 

It was observed that at 65oC, all reaction conditions yielded a very low amount of 

biodiesel. However, as the temperature increased there was an increase in FAME yield. 

The highest yield of 51 % was achieved at 15:1 methanol to oil ratio for 3 % of LiLDH 

after 4 h (Figure 4.14). 
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Figure 4.13   FAME yield with LiLDH at 40:1 methanol to oil ratio and 1 % (by wt.) of 
the catalyst for 2 hr of transesterification 

 
  

It was observed that increasing the amount of catalyst resulted in higher FAME 

yields (Figure 4.14). However, increasing the amount of methanol did not result in better 

yields (Figure 4.12, 4.13). Although the amount of biodiesel produced with this particular 

catalyst was not too enticing, the results were encouraging due to the fact that it was 

proven that LDH is selective towards transesterification and since this is a true 

heterogeneous catalyst, LDH open a pathway to develop more robust heterogeneous 

catalysts.   
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Figure 4.14   FAME yield with LiLDH at 15:1 methanol to oil ratio and 3 % (by wt.) of 
the catalyst for 4 hr of transesterification 

 

 

4.3 Catalyst Characterization 

 

4.3.1 Surface area of the catalysts 

 Table 4.2 shows the surface area of the catalysts based on the nitrogen adsorption 

/desorption method (multipoint BET), and it was found that LiLDH had the largest area 

of 190.5 m2/g  followed by MgO with 157.4 m2/g whereas the PbO2 had the minimum of 

0.38 m2/g. All the three lead catalyst were found to have a very small surface area (0.3-

1.0 m2/g). All the NaMO catalysts showed approximately similar surface areas in the 

range of 7-14 m2/g, suggesting that different temperatures of catalysts preparation (25, 

100, 150 and 200 oC) did not affect the surface area of the catalysts. 
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Table 4.2   Surface area of the metal oxides 
 

Catalyst Surface area, 

m2/g 

PbO2 0.38 

PbO 0.55 

BaO 0.76 

Pb3O4 0.98 

ZnO 4.04 

Tl2O3 6.71 

NaMO4 7.37 

NaMO2 10.29 

NaMO3 13.88 

NaMO1 13.98 

MnO2 50.55 

CaO 61.39 

MgO 157.4 

LiLDH 190.5 

 

4.3.2 Acidity/ Basicity of the catalysts 

 Based on the methods described in the section 3.3.2 and 3.3.3 by using Hammett 

Indicators followed by the titration, acid/base site strength and acidity/basicity was 

determined. Table 4.3 shows the type of the catalyst with their site strength and 

acidity/basicity value. MgO was found to be highly basic with a basicity of 46.05 mmol 

of HCl / g of MgO and had a positive effect on the transesterification without cracking 

the methyl esters at the higher temperature. ZnO, PbO and PbO2  was found to be 
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amphoteric with a site strength (H_) in the range of  6.8 and 8.2, and other than these 

three catalysts all the rest of the catalyst were found to be basic. 

 

Table 4.3   Site strength of the metal oxides and their respective acidity/basicity value 
 

Catalyst Type Acid/ Base Site 

strength, (H_) 

Acidity, mmol 

of NaOH /g of 

catalyst 

Basicity, mmol 

of HCl/g of 

catalyst 

MgO Basic 11<(H_)<15  46.05 

CaO Basic 10.1<(H_)<11  16.24 

ZnO Amphoteric 6.8<(H_)<8.2 12.25 32.35 

PbO Amphoteric 6.8<(H_)<8.2 5.747 7.58 

PbO2 Amphoteric 6.8<(H_)<8.2 17.86 7.00 

Pb3O4 Basic 6.8<(H_)<8.2  14.545 

Tl2O3 Basic 10.1<(H_)<11  15.93 

MnO2 Basic 10.1<(H_)<11  16.53 

BaO Basic 10.1<(H_)<11  21.21 

NaMO1 Basic 11<(H_)<15  9.86 

NaMO2 Basic 11<(H_)<15  9.8 

NaMO3 Basic 11<(H_)<15  7.814 

NaMO4 Basic 11<(H_)<15  7.81 

LiLDH Basic 15<(H_)<18.2  21.2 
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 As far as site strength was concern LiLDH shown a highest basic strength in the 

(H_) range of 15-18.2, followed by MgO and all the NaMO catalyst with a (H_) range of 

11-15. 

 

4.3.3 Leaching analysis 

 The leaching of the metal from the catalysts to the biodiesel and glycerol samples 

was analyzed by Flame Atomic Absorption Analysis (FLAA) in Mississippi State 

Chemical Laboratory, Mississippi State University. The technique of flame atomic 

absorption spectroscopy (FAAS) requires a liquid sample to be aspirated, aerosolized, 

and mixed with combustible gases, such as acetylene and air or acetylene and nitrous 

oxide. The mixture is ignited in a flame whose temperature ranges from 2100 to 2800 oC. 

During combustion, atoms of the element of interest in the sample are reduced to free, 

unexcited ground state atoms, which absorb light at characteristic wavelengths. The 

characteristic wavelengths are element specific and accurate to 0.01-0.1nm. Table 4.4 

shows the amount of the metal leached in the biodiesel and glycerol sample. 

 



www.manaraa.com

57 

Table 4.4   Leaching of metals from their respective metal oxide in biodiesel and glycerol 
sample 

 
Catalyst Leaching in glycerol,  

mg/kg of Glycerol 

Leaching in biodiesel, 

mg/kg of Biodiesel 

PbO 2100 13000 

ZnO 45 110 

CaO 1500 6800 

MgO 460 8200 

PbO2 4400 710 

Tl2O3 35000 19000 

Pb3O4 8100 760 

 

Thallium oxide had high leaching in both biodiesel and glycerol samples, whereas Zinc 

oxide had the minimum. 

 

4.3.4 X-Ray Diffractogram (XRD) and Scanning Electron Microscope (SEM) 

analysis 

Figure 4.15 shows scanning electron microscope (SEM) images of NaMO1, NaMO2, 

NaMO3 and NaMO4. The images depicts that the temperature has effect on their  
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(a)          (b) 

 

 

 

   

    (c)         (d) 

Figure 4.15   SEM images of (a)- NaMO1, (b)- NaMO2, (c)- NaMO3 and (d)- NaMO4 
 

 
texture. It was found that the low temperature treatment showed highly dense and smooth 

characteristics. In this NaMO1 was found to be highly denser and smoother than other 

mixed oxide catalysts.  Table 4.5 shows the elemental analysis of NaMO1, NaMO2, 

NaMO3 and NaMO4. It was found that NaMO has higher amount of Na (Sodium) in the 

catalyst, and this is the reason it has got the highest yield for transesterification. 
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Table 4.5   Elemental analysis of NaMO1, NaMO2, NaMO3 and NaMO4 

Element Weight% Atomic% 
   

Na 11.23 29.67 
Si 28.53 56.58 
La 60.23 13.75 

Totals 100.00  

      (a)- NaMO1 

 

 

 

 

 
         (b)- NaMO2 

 

Element Weight% Atomic% 
   

Na 3.13 10.52 
Si 27.45 69.30 
La 69.42 20.18 

Totals 100.00  
         (c)- NaMO3 

 

Element Weight% Atomic% 
   

Na 3.52 10.90 
Si 26.57 61.79 
Al 3.77 5.20 
La 61.98 16.60 

Totals 100.00  
(d)- NaMO4 

 

Element Weight% Atomic% 
   

Na 10.38 26.84 
Si 28.94 56.16 
Al 2.48 2.86 
La 56.92 12.72 

Totals 100.00  
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 Figure 4.16 to 4.19 shows the X-ray diffractogram patterns for NaMO1, NaMO2, 

NaMO3 and NaMO4 respectively, and it can be shown that all the NaMO catalysts 

follows the same spectrum. 

 

 

 

Figure 4.16   X-ray patterns for NaMO1 
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Figure 4.17   X-ray patterns for NaMO2 

 

  

Figure 4.18   X-ray patterns for NaMO3 
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 Figure 4.19   X-ray patterns for NaMO4 

 

4.4 Reaction Kinetics Determination 

 Based on the principles discussed in Section 3.4, all eight cases for each catalyst 

were plotted and the coefficient of correlation (R2) was determined for each case. Finally 

the case with the highest coefficient of correlation (R2) was selected for the determination 

of rate constant and reaction order. Table 4.6 gives the R2 values of all eight cases for 

each of the 5 catalysts. 

 For some experimental units, Table 4.6 renders an array of R2 values because the 

data has been transferred in the form of y=mx in order to model the reaction order based 

on Equation 3.7 to 3.14. For each catalyst, the highest R2 value is selected out of the 8 

cases and the corresponding values of slope (the rate constant, as discussed in section 3.4) 

were determined. Table 4.7 gives the reaction order of the transesterification w.r.t., each 

of the reactants, as well as the overall reaction order and the value of rate constant for 

each of the catalysts. It was observed that as the rate constant per unit surface area of the 
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catalyst increases the FAME yield increases. However we did not use all NaMO 

catalysts, because it was found that they are almost similar in their properties and 

structure. So we just used NaMO1 (High yield catalyst) for the kinetics determination. 

 

Table 4.6   The value of coefficient of determination (R2) of all eight cases for each  
catalyst  

 
Catalysts→  

Cases 
↓  

PbO MgO MnO2 BaO CaO NaMO1

1 0.90 0.91 0.87 0.39 0.48 0.40 

2 0.89 0.90 0.85 0.49 0.45 0.89 

3 0.91 0.93 0.88 0.41 0.49 0.41 

4 0.88 0.88 0.83 0.51 0.44 0.94 

5 0.83 0.83 0.77 0.61 0.41 0.75 

6 0.90 0.91 0.86 0.42 0.46 0.40 

7 0.81 0.80 0.74 0.63 0.41 0.74 

8 0.86 0.85 0.80 0.53 0.44 0.97 
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Table 4.7   Reaction order of the transesterification w.r.t. each of the reactant as well as 
overall and the rate constant 

 
Catalyst Order w.r.t. 

Triglyceride 
Order 
w.r.t. 

Methanol 

Overall 
Order 

Rate Constant 

PbO 0 1 1 0.0058, min-1m-2 

MgO 0 1 1 0.000007, min-1m-2 

MnO2 0 1 1 0.00003, min-1m-2 

BaO 2 1 3 0.011, m6mole-2min-1m-2 

CaO 0 1 1 0.000008, min-1m-2 

NaMO1 1 2 3 429, m6mole-2min-1m-2 

 

4.5 Reactor Modeling 

 Based on the high yield catalyst (NaMO1) from the screening analysis, we model 

batch rector. We also did some more kinetics analysis for NaMO1 in terms of activation 

energy (Ea) and pre-exponential factor (A) which was needed for the reactor modeling in 

Arhenius equation. Equation 4.1 shows the Arhenius equation. 

)/(exp RTEaAk −=         (4.1) 

Where,   

 K is the rate constant 

 A is the pre exponential factor 

 Ea is the activation energy 

 R is the universal gas constant 

 T is the absolute temperature 
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Based on the principles discussed in Section 3.4, we evaluated the rate constant for 

NaMO1 at two different temperatures. Table 4.8 shows the value of rate constant, 

activation energy and pre-exponential factor for NaMO1. 

 

 

Table 4.8 Activation energy and pre-exponential factor data for NaMO1 

Temperature, 

(oC) 

Rate Constant, 

(m6mole-2min-1g-1) 

Activation 

Energy, 

(Joulemole-1) 

Pre-exponential Factor 

100 

215 

197.8 

5581.6 

4.441 x104 

 

4.939 x 106 

 

 

 A batch reactor (liquid) with constant volume was modeled in the study. 

Theoretically in a batch reactor, no mass enters or leave the system. The species mass 

balance is given by equation 4.2:  

ir
ri rV

dt
Vcd

=
)(

         (4.2) 

This takes into account the effect of changing volume.  In equation 4.2, ci is the species 

molar concentration (mol/m3), Vr denotes the reactor volume (m3), and ri is the species 

rate expression (mol/m3.min.g) for solid catalysis. For an incompressible and ideally 

mixed reacting liquid, the energy balance at constant temperature is: 
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0
.

=∑
i

ipir dt
dTCcV       (4.3) 

In the equation 4.3 Cpi is the species molar heat capacity (J/mol.K), T is the temperature 

(K), and t is the time (min). Since the temperature is constant the right hand term is equal 

to zero. The heat of the reaction can be written as  

∑−=
j

jjr rHVQ          (4.4) 

Where Hj is the enthalpy of reaction (J/mol.K), and rj is the reaction rate (mol/m3.min.g). 

For the reactor modeling analysis, we used methyl linoleate because almost 60% of 

soybean oil consists of methyl linoleate. All the thermodynamic data were obtained from 

Yaws (1999) for example the data for Cp, H (enthalpy). The rate expression used in this 

study is given in equation 4.5. 

2
METGj CkCr =          (4.5) 

Where CTG and CME were the concentrations of methyl linoleate and methanol 

respectively.   

 The variables changed in the modeling were the temperature and oil to methanol 

ratio. Three different temperature of 115, 215 and 315 oC were used whereas for the oil to 

methanol ratio three different ratio of 1:3, 1:6 and 1:9 were used. Figure 4.20 to 4.22 

shows the concentration profile of Linoleic acid(TG), methyl linoleate(BD) and 

methanol(ME) at 115, 215 and 315oC for 1:6 oil to methanol ratio. Figure 4.23 to 4.25 

shows the concentration profile of Linoleic acid, methyl linoleate and methanol at 1:3, 

1:6 and 1:9 oil to methanol ratio at 215oC. As it can be seen from the figure 4.20 to 4.22, 

as the temperature increased the system reached equilibrium conditions fast. The situation 
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was similar with oil to methanol ratio - as the ratio increased the reaction reached its 

equilibrium fast. Figure 4.26 shows the Comparison of experimental and the model 

reaction rate at 215oC w.r.t. time using rate model with NaMO1, and it can be seen that 

the predicted model fits to the experimental data. The slight disparity could be attributed 

to 1). The model makes predictions based on ideal conditions and therefore, the predicted 

concentration was maximum for any given condition and 2). The model was based on 

methyl linoleate while the actual products from soybean oil ranges from C16 - C 18 

FAMES.  

 

4.6 Biodiesel Upgrading 

 

4.6.1 Mass spectrometer results 

 As described in Section 3.5.2, we used two different experimental methods in 

order to upgrade the biodiesel. In the first experiment methyl linoleate was used for the 

analysis and the catalyst used were MoO2Cl2 (5% mol) in dry toluene (5 ml) and Phenyl 

Silane (PhSiH3) (2.0 mmol) under nitrogen atmosphere. After the reaction mixture was 

stirred at reflux temperature of 115oC for 20 h, the mass spectrometric analysis did not 

indicate any deoxygenation and at the same time it was not economically feasible 

because of longer period of reaction. However we were able to remove one double bond 

from the methyl linoleate and were able to produce 10-Octadecenoic acid methyl ester 

(with 90% probability) . Although the treatment increased the oxidative stability of the 

methyl ester by removing unsaturation, the results were not that convincing because our 
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objective was to deoxygenate the ester. Hence we went for a second alternative treatment 

where biodiesel was treated with HZSM-5 in an attempt to deoxygenate. 

In the second experiment, we used biodiesel with HZSM-5 zeolite (Calcined ZSM 

at 450oC for 4 hrs). The deoxygenation was done using 100 ml of pure biodiesel was 

mixed with 2 g of HZSM-5 catalyst in a high pressure reactor (Parr reactor) at three 

different temperatures of 215, 315 and 375oC for 10 hrs. 

The results of the mass spectrometric analysis indicated several deoxygenated 

products in the form of aliphatic and aromatic hydrocarbons and with higher probability 

(more than 90 %).  The compounds detected were xylene, 1, 2, 3-trimethyl benzene, 1, 2, 

3, 4 -tetramethyl benzene, 9-octadecyne, tetradecane, pentadecane hexadecane, 

nonadecane and some lower molecular weight methyl esters. Also the three different 

temperatures had significant effect on deoxygenation. Figures 4.27, 4.28 and 4.29 shows 

the product spectrum at 215, 315 and 375 oC. It can be seen that at 375 oC (Figure 4.29) 

there were larger numbers of deoxygenated hydrocarbons. This was a qualitative analysis 

for the biodiesel upgrading. Section 4.6.2 will deal with the approximate quantitative 

analysis (thermodynamic analysis) at equilibrium conditions.  
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Figure 4.26   Comparison of experimental and the model reaction rate at 215oC w.r.t. 
time using rate model with NaMO1 

 

 

 

4.6.2 Thermodynamic analysis of methyl linoleate 

 We did a thermodynamic analysis for methyl linoleate. Based on the results from 

the mass spectrometric qualitative analysis, we were able to detect some deoxygenated 

product like xylene, nanodecane, hexadecane, pentadecane and tetradecane. Equation 4.6 

shows the general expression of deoxygenation reaction of methyl linoleate. 

C19H34O2 → C8H10 + C14H30 + C15H32 + C16H34 + C19H40    (4.6) 
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Constraints for the Mixture:  

• The number of moles must be positive:  

ni > 0,  i=1, 2, 3, 4, 5 

• There are 3 mass balance relationships,  

19 = 8 * n1 + 14 * n2 + 15 * n3 + 16 * n4 + 19 * n5 

34 = 10 * n1 + 30 * n2 + 32 * n3 + 34 * n4 + 40 * n5 

2 = 0 

 Where,  

  n1 is xylene 

  n2 is tetradecane 

  n3 is pentadecane 

  n4 is hexadecane 

  n5 is nonadecane 

 Figure 4.31 shows the result of the thermodynamic analysis, as it can be seen that 

the amount (number of moles) of xylene, tetradecane and pentadecane was higher then 

hexadecane and nonadecane. However, the difference in the number of moles of the 

spectrum of compounds is not that significant over the temperatures range of 100 – 

600oC. According to Figure 4.30, we can expect that thermodynamically, a maximum of 

0.93 moles of xylene, 0.52 moles of tetradecane, 0.19 moles of pentadecane and  



www.manaraa.com

81 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700

Temperature, oC

N
o.

 o
f m

ol
es

Xylene
Nonadecane
Tetradecane
Pentadecane
Hexadecane

Figure 4.31   Thermodynamic analysis of Methyl Linoleate  

 

smaller amount of hexadecane and nonadecane can be produced from one mole of methyl 

linoleate. Table 4.9 depicts the maximum amount of different hydrocarbons which can be 

produced from one mole of methyl linoleate. 
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Table 4.9   Number of moles of different hydrocarbons deoxygenated from one mole 
methyl linoleate at 375 oC 

 
Compounds Moles 

Xylene 0.933 

Tetradecane 0.554 

Pentadecane 0.183 

Hexadecane 0.060 

Nonadecane 0.002 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

5.1 Summary  

 The base (potassium hydroxide) catalyzed transesterification of soybean oil using 

ultrasonic mixing produces acceptable yields of biodiesel (fatty acid methyl esters) in 

relatively short time. With the experiments conducted and collected data, some 

combination of time and amplitude can be recommended in UP400S (ultrasonic 

processor) for obtaining high yields of biodiesel. One can use 5 min/ 75 % amplitude, 5 

min/ 100 % amplitude, 10 min/ 50 % amplitude or 15 min/ 25 % amplitude of UP400S 

for obtaining high yields of biodiesel with 100 cc of soybean oil, 25 cc methanol (6:1) 

and 1 g of potassium hydroxide. Analogously, we can provide an energy range of 1.4 to 

2.41 kJ/g of soybean oil to obtain over 97% transesterification yield. 

 All the solid catalysts used in this study had somewhat different behavior towards 

transesterification reaction. Lead oxide catalysts were found to be good towards the 

transesterification and resulted in more than 89% of biodiesel yield. MgO and Pb3O4 had 

shown an increasing trend from 75oC to 225oC which warrants higher temperature 

studies. Other than these two catalyst, all other tested catalysts displayed a trend towards 

cracking at higher temperatures. Tl2O3 and ZnO, in spite of their opposite leaching 

behavior, displayed a similar trend towards transesterification. This can be attributed to 
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their approximately similar surface area. CaO was selective towards transesterification at 

all the three temperatures tested.  

 Base catalyzed transesterification of soybean oil using solid catalysts produces 

biodiesel under high pressure and high temperature conditions. A maximum biodiesel 

yield of 85% was obtained by BaO in 14 minutes, whereas, PbO, MnO2, CaO and MgO 

gave maximum yields of 84, 80, 78 and 66% respectively at 215 0C.  

 Out of all heterogeneous catalysts tested, the mixed metal oxide catalyst showed 

the highest yield towards transesterification. More than 99% of FAME yield was 

observed with NaMO1. Rest of NaMO (i.e. NaMO2, 3, 4) also got good yield of 

biodiesel. All the prepared catalysts were basic in nature.  

 The overall reaction order of PbO, MnO2, BaO, CaO, MgO and NaMO was found 

to be 1, 1, 3, 1, 1 and 3, respectively. The highest rate constant was observed for NaMO1 

which was 429, m6 mole-2 min-1 m-2 of the catalyst.  

 As far as biodiesel upgrading is concerned, we were able to detect some 

deoxygenated hydrocarbons from methyl linoleate. Mass spectrometry was able to detect 

xylene, tetradecane, pentadecane, hexadecane, nonadecane and some more hydrocarbons 

(with high probability of more than 90%). The approximate theoretical amounts of these 

compounds were determined by a thermodynamic analysis. Accordingly, with this 

analysis, we can say that HZSM-5 was able to break the methyl esters in to deoxygenated 

hydrocarbons. 
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5.2 Conclusions 

 Based on the present study we concluded the following facts. 

• Ultrasound energy can be effectively used for fast transesterification reaction rates 

in comparison to conventional impeller fitted batch reaction systems.  

• Basic solid catalysts including MgO, Pb3O4, and the mixed oxide (NaMO1) 

prepared in this study can be effectively used for the transesterification reaction in 

order to rectify the problem of separation. 

• Biodiesel can be upgraded using HZSM-5 catalysts at higher temperatures in 

order to deoxygenate the fatty acid methyl esters into lower molecular weight 

hydrocarbons (xylene, tetradecane, pentadecane, hexadecane, nonadecane and 

some other). 
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CHAPTER VI 

RECOMMENDATIONS 
 
 
Based on the present study, we make the following recommendations: 

• Ultrasonication proved to be highly effective for homogeneous catalyzed 

transesterification. Accordingly, the effectiveness of this technology for the 

transesterification of triglycerides with solid catalyst needs to be investigated. 

This technology has the potential to be as effective for heterogeneously catalyzed 

process since ultrasound simultaneously provides sufficient amount of energy as 

well as mixing power to circumvent mass transfer limitations as opposed to 

conventional mixing.  

• In the mixed oxides study, Na impregnated along with La proved to be an 

effective transesterification catalyst. However, we still observed some leaching. 

This opens up new doors to look at other heavy metals like cerium (Ce), copper 

(Co), zinc (Zn), thallium (Th) to be coupled/doped and tested for effectiveness 

for the transesterification. 

• In the methyl esters upgrading study, it was revealed that pure ZSM-5 was able to 

produce deoxygenated products from biodiesel. Metal doping in zeolites are 

known to enhance catalytic activity of zeolites in numerous reactions. In light of 
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this, the ability of metal doped ZSM-5 to for deoxygenation of fatty acid methyl 

esters needs to be further investigated.
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APPENDIX A 

 

KINETICS DATA FOR ALL THE SOLID CATALYSTS 
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APPENDIX – A 

Appendix – A presents the kinetic data for all the selected catalysts. 

  

MgO 

Time,min FAME, % Conversion, X CTG
0 CME

0 CTG CME 
0 3.348 0.03348 0.1 0.6 0.096652 0.589956 
15 1.954 0.01954 0.1 0.6 0.098046 0.594138 
30 4.949 0.04949 0.1 0.6 0.095051 0.585153 
45 14.121 0.14121 0.1 0.6 0.085879 0.557637 
60 31.189 0.31189 0.1 0.6 0.068811 0.506433 
75 44.4 0.444 0.1 0.6 0.0556 0.4668 
90 52.725 0.52725 0.1 0.6 0.047275 0.441825 

105 58.451 0.58451 0.1 0.6 0.041549 0.424647 
120 66.765 0.66765 0.1 0.6 0.033235 0.399705 

 

PbO 

Time,min FAME, % Conversion, X CTG
0 CME

0 CTG CME 
0 4.383 0.04383 0.1 0.6 0.095617 0.586851 
15 4.513 0.04513 0.1 0.6 0.095487 0.586461 
30 50.428 0.50428 0.1 0.6 0.049572 0.448716 
45 81.583 0.81583 0.1 0.6 0.018417 0.355251 
60 84.529 0.84529 0.1 0.6 0.015471 0.346413 

 

MnO2 

Time,min FAME, % Conversion, X CTG
0 CME

0 CTG CME 
0 0.776 0.00776 0.1 0.6 0.099224 0.597672 
15 2.191 0.02191 0.1 0.6 0.097809 0.593427 
30 2.264 0.02264 0.1 0.6 0.097736 0.593208 
45 5.183 0.05183 0.1 0.6 0.094817 0.584451 
60 39.9 0.399 0.1 0.6 0.0601 0.4803 
75 57.646 0.57646 0.1 0.6 0.042354 0.427062 
90 71.446 0.71446 0.1 0.6 0.028554 0.385662 

105 77.856 0.77856 0.1 0.6 0.022144 0.366432 
120 80.54 0.8054 0.1 0.6 0.01946 0.35838 
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BaO 

Time,min FAME, % Conversion, X CTG
0 CME

0 CTG CME 
0 64.624 0.64624 0.1 0.6 0.035376 0.406128 
2 81.96 0.8196 0.1 0.6 0.01804 0.35412 
4 82.25 0.8225 0.1 0.6 0.01775 0.35325 
6 84.35 0.8435 0.1 0.6 0.01565 0.34695 
8 84.73 0.8473 0.1 0.6 0.01527 0.34581 

 

CaO 

Time,min FAME, % Conversion, X CTG
0 CME

0 CTG CME 
0 71.42 0.7142 0.1 0.6 0.02858 0.38574 
2 78.07 0.7807 0.1 0.6 0.02193 0.36579 
4 76.7 0.767 0.1 0.6 0.0233 0.3699 

 

NaMO1 at 100oC 

Time,min FAME, % Conversion, X CTG
0 CME

0 CTG CME 
0 0 0 0.0008 0.0048 0.0008 0.0048 
30 8.01 0.0801 0.0008 0.0048 0.000736 0.004608 
60 18.93 0.1893 0.0008 0.0048 0.000649 0.004346 
90 31.5 0.315 0.0008 0.0048 0.000548 0.004044 

 

NaMO1 at 215oC 

Time,min FAME, % Conversion, X CTG
0 CME

0 CTG CME 
0 0 0 0.0008 0.0048 0.0008 0.0048 
30 91.62 0.9162 0.0008 0.0048 6.7E-05 0.002601 
60 94.46 0.9446 0.0008 0.0048 4.43E-05 0.002533 
90 98.3 0.983 0.0008 0.0048 1.36E-05 0.002441 

120 99.3 0.993 0.0008 0.0048 5.6E-06 0.002417 
 

Where, 

 X is the conversion 

 CTG
0 and CME

0 are the initial concentration of triglyceride and methanol respectively. 

 CTG and CME are the final concentration of triglyceride and methanol respectively. 
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APPENDIX B 

 

 

DATA FOR THERMODYNAMIC ANALYSIS OF METHYL LINOLEATE
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APPENDIX – B 

Appendix – B depicts the data for the thermodynamic analysis of methyl linoleate. 

The first part of Appendix – B shows all the Gibbs energy data for different 

deoxygenated product at different temperatures of 100, 215, 315, 375, 500 and 600 oC. 

 

100 oC 
Species A B C G R G/RT 
Xylene 15.063 0.33452 4.14E-05 1.46E+02 0.008314 46.94981 

Nonadecane -444.994 1.815 1.29E-04 2.50E+02 0.008314 80.58462 
Tetradecane -339.495 1.33 9.84E-05 1.70E+02 0.008314 54.91042 
Pentadecane -360.562 1.4269 1.05E-04 1.86E+02 0.008314 60.04982 
Hexadecane -381.687 1.5241 1.10E-04 2.02E+02 0.008314 65.19269 

 

215 oC 
Species A B C G R G/RT 
Xylene 15.063 0.33452 4.14E-05 1.88E+02 0.008314 46.37764 

Nonadecane -444.994 1.815 1.29E-04 4.71E+02 0.008314 116.1797 
Tetradecane -339.495 1.33 9.84E-05 3.33E+02 0.008314 82.06974 
Pentadecane -360.562 1.4269 1.05E-04 3.61E+02 0.008314 88.89566 
Hexadecane -381.687 1.5241 1.10E-04 3.88E+02 0.008314 95.72516 

 

315 oC 
Species A B C G R G/RT 
Xylene 15.063 0.33452 4.14E-05 2.26E+02 0.008314 46.24403 

Nonadecane -444.994 1.815 1.29E-04 6.67E+02 0.008314 136.3803 
Tetradecane -339.495 1.33 9.84E-05 4.77E+02 0.008314 97.48387 
Pentadecane -360.562 1.4269 1.05E-04 5.15E+02 0.008314 105.2673 
Hexadecane -381.687 1.5241 1.10E-04 5.53E+02 0.008314 113.053 

 

375 oC 
Species A B C G R G/RT 
Xylene 15.063 0.33452 4.14E-05 2.49E+02 0.008314 46.25741 

Nonadecane -444.994 1.815 1.29E-04 7.85E+02 0.008314 145.7372 
Tetradecane -339.495 1.33 9.84E-05 5.64E+02 0.008314 104.6241 
Pentadecane -360.562 1.4269 1.05E-04 6.08E+02 0.008314 112.8512 
Hexadecane -381.687 1.5241 1.10E-04 6.52E+02 0.008314 121.0795 
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500 oC 
Species A B C G R G/RT 
Xylene 15.063 0.33452 4.14E-05 2.98E+02 0.008314 46.42754 

Nonadecane -444.994 1.815 1.29E-04 1.03E+03 0.008314 161.0284 
Tetradecane -339.495 1.33 9.84E-05 7.47E+02 0.008314 116.2935 
Pentadecane -360.562 1.4269 1.05E-04 8.05E+02 0.008314 125.246 
Hexadecane -381.687 1.5241 1.10E-04 8.62E+02 0.008314 134.1968 

 

600 oC 
Species A B C G R G/RT 
Xylene 15.063 0.33452 4.14E-05 3.39E+02 0.008314 46.65686 

Nonadecane -444.994 1.815 1.29E-04 1.24E+03 0.008314 170.5075 
Tetradecane -339.495 1.33 9.84E-05 8.97E+02 0.008314 123.5279 
Pentadecane -360.562 1.4269 1.05E-04 9.65E+02 0.008314 132.9304 
Hexadecane -381.687 1.5241 1.10E-04 1.03E+03 0.008314 142.3284 

 

Where, 

A, B, C are coefficient of Gibbs free energy 

G is the Gibbs free energy 

R is Gas constant  

T is the absolute temperature. 

Formation of different compounds (number of moles) after deoxygenation of methyl 

linoleate at different temperature is shown in the following table. 

Species 100 oC 215 oC 315 oC 375 oC 500 oC 600 oC 
Xylene 0.932 0.933 0.933 0.933 0.933 0.933 

Nonadecane 0.0038 0.002 0.002 0.002 0.002 0.001 
Tetradecane 0.526 0.542 0.551 0.554 0.559 0.561 
Pentadecane 0.195 0.188 0.185 0.183 0.181 0.18 
Hexadecane 0.072 0.065 0.062 0.06 0.058 0.057 
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Second part of the Appendix- B gives the coding with SAS 9.2 for thermodynamic 

analysis at all temperatures. 

 

At 100 oC 

proc nlp tech=tr pall;  

      array c[5] 46.94981104 80.58461693 54.91041704 60.04981772 65.19269134;  

      array x[5] x1-x5;  

      min y;  

      parms x1-x5 = .1;  

      bounds 1.e-6 <= x1-x5;  

      lincon 19. = 8. * x1 + 19. * x2 + 14. *x3 + 15. *x4 + 16. *x5,  

             34. = 10. * x1 + 40. * x2 + 30. *x3 + 32. * x4 + 34 *x5, 

    2. = 0; 

      

      s = x1 + x2 + x3 + x4 + x5;  

      y = 0.;  

      do j = 1 to 5;  

         y = y + x[j] * (c[j] + log(x[j] / s));  

      end;  

   run; 

 

At 215 oC 

proc nlp tech=tr pall;  

      array c[5] 46.37763523 116.179698 82.06974315 88.89565584 95.72516096 ;  

      array x[5] x1-x5;  

      min y;  

      parms x1-x5 = .1;  

      bounds 1.e-6 <= x1-x5;  

      lincon 19. = 8. * x1 + 19. * x2 + 14. *x3 + 15. *x4 + 16. *x5,  

             34. = 10. * x1 + 40. * x2 + 30. *x3 + 32. * x4 + 34 *x5, 
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    2. = 0; 

      

      s = x1 + x2 + x3 + x4 + x5;  

      y = 0.;  

      do j = 1 to 5;  

         y = y + x[j] * (c[j] + log(x[j] / s));  

      end;  

   run; 

 

At 315 oC 

proc nlp tech=tr pall;  

      array c[5] 46.24403451 136.3802554 97.48386709 105.2673033 113.0530345 ;  

      array x[5] x1-x5;  

      min y;  

      parms x1-x5 = .1;  

      bounds 1.e-6 <= x1-x5;  

      lincon 19. = 8. * x1 + 19. * x2 + 14. *x3 + 15. *x4 + 16. *x5,  

             34. = 10. * x1 + 40. * x2 + 30. *x3 + 32. * x4 + 34 *x5, 

    2. = 0; 

      

      s = x1 + x2 + x3 + x4 + x5;  

      y = 0.;  

      do j = 1 to 5;  

         y = y + x[j] * (c[j] + log(x[j] / s));  

      end;  

   run; 

 

At 375 oC 

proc nlp tech=tr pall;  

      array c[5] 46.25741477 145.7371932 104.6240898 112.8512149 121.0794963 ;  
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      array x[5] x1-x5;  

      min y;  

      parms x1-x5 = .1;  

      bounds 1.e-6 <= x1-x5;  

      lincon 19. = 8. * x1 + 19. * x2 + 14. *x3 + 15. *x4 + 16. *x5,  

             34. = 10. * x1 + 40. * x2 + 30. *x3 + 32. * x4 + 34 *x5, 

    2. = 0; 

      

      s = x1 + x2 + x3 + x4 + x5;  

      y = 0.;  

      do j = 1 to 5;  

         y = y + x[j] * (c[j] + log(x[j] / s));  

      end;  

   run; 

 

At 500 oC 

Proc nlp tech=tr pall;  
      array c[5] 46.42754 161.028446 116.2934819 125.2460092 134.196773 ;  
      array x[5] x1-x5;  
      min y;  
      parms x1-x5 = .1;  
      bounds 1.e-6 <= x1-x5;  
      lincon 19. = 8. * x1 + 19. * x2 + 14. *x3 + 15. *x4 + 16. *x5,  
             34. = 10. * x1 + 40. * x2 + 30. *x3 + 32. * x4 + 34 *x5, 
    2. = 0; 
      
      s = x1 + x2 + x3 + x4 + x5;  
      y = 0.;  
      do j = 1 to 5;  
         y = y + x[j] * (c[j] + log(x[j] / s));  
      end;  
   run; 
 
 
At 600 oC 
proc nlp tech=tr pall;  
      array c[5] 46.6568615 170.5074864 123.5279418 132.9304124 142.3284245 ;  
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      array x[5] x1-x5;  
      min y;  
      parms x1-x5 = .1;  
      bounds 1.e-6 <= x1-x5;  
      lincon 19. = 8. * x1 + 19. * x2 + 14. *x3 + 15. *x4 + 16. *x5,  
             34. = 10. * x1 + 40. * x2 + 30. *x3 + 32. * x4 + 34 *x5, 
    2. = 0;  
      s = x1 + x2 + x3 + x4 + x5;  
      y = 0.;  
      do j = 1 to 5;  
         y = y + x[j] * (c[j] + log(x[j] / s));  
      end;  
   run; 
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